ﻻ يوجد ملخص باللغة العربية
Opposite to the common idea of a magnetic order requirement to obtain spin current propagation, materials with no magnetic ordering have also been revealed to be efficient spin conductors. In this work, we investigate the spin current injection at the interface between a magnetic insulator and a superconductor. We are mainly interested in the paramagnetic insulator/superconductor interface however, our model also describes the ferromagnetic phase. We used the Schwinger bosonic formalism to describe the magnetic insulator and standard BCS theory was applied to treat the superconductor layer. In the normal-metal limit, our results are in agreement with the expected ones. For example, we found the correct spin current behavior $Iapprox T^{3/2}$ at low temperature. In addition, our model shows a pronounced peak in the spin current injection at temperatures close to the superconductor transition temperature due to the superconducting quasiparticle coherence. The role of magnetic fields in the spin current injection is also investigated.
Superconductivity and magnetism are generally incompatible because of the opposing requirement on electron spin alignment. When combined, they produce a multitude of fascinating phenomena, including unconventional superconductivity and topological su
A ferromagnetic insulator (FI) attached to a conventional superconductor (S) changes drastically the properties of the latter. Specifically, the exchange field at the FI/S interface leads to a splitting of the superconducting density of states. If S
Hybrid normal metal - insulator - superconductor microstructures suitable for studying an interference of electrons were fabricated. The structures consist of a superconducting loop connected to a normal metal electrode through a tunnel barrier . An
We propose a mechanism whereby spin supercurrents can be manipulated in superconductor/ferromagnet proximity systems via nonequilibrium spin injection. We find that if a spin supercurrent exists in equilibrium, a nonequilibrium spin accumulation will
We theoretically investigate domain wall motion in an antiferromagnetic insulator layer caused by thermally generated spin currents in an adjacent spin-split superconductor layer. An uncompensated antiferromagnet interface enables the two crucial ing