ﻻ يوجد ملخص باللغة العربية
We present a thorough analysis of the sequential freeze-in mechanism for dark matter production in the early universe. In this mechanism the dark matter relic density results from pair annihilation of mediator particles which are themselves produced by thermal collisions of standard model particles. Below some critical value of the mediator coupling to standard model fields, this sequential channel dominates over the usual freeze-in where dark matter is directly produced from thermal collisions, even when the mediator is not in thermal equilibrium. The latter case requires computing the full non-thermal distribution of the mediators, for which finite temperature corrections are particularly important.
The mirror twin Higgs (MTH) addresses the little hierarchy problem by relating every Standard Model (SM) particle to a twin copy, but is in tension with cosmological bounds on light degrees of freedom. Asymmetric reheating has recently been proposed
We investigate a minimal neutrino portal dark matter (DM) model where a right-handed neutrino both generates the observed neutrino masses and mediates between the SM and the dark sector, which consists of a fermion and a boson. In contrast to earlier
We present the conformal freeze-in (COFI) scenario for dark matter production. At high energies, the dark sector is described by a gauge theory flowing towards a Banks-Zaks fixed point, coupled to the standard model via a non-renormalizable portal in
We present an interesting Higgs portal model where an axion-like particle (ALP) couples to the Standard Model sector only via the Higgs field. The ALP becomes stable due to CP invariance and turns out to be a natural candidate for freeze-in dark matt
We perform a model independent study of freeze-in of massive particle dark matter (DM) by adopting an effective field theory framework. Considering the dark matter to be a gauge singlet Majorana fermion, odd under a stabilising symmetry $Z_2$ under w