ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of undetected cases on tracking epidemics: the case of COVID-19

133   0   0.0 ( 0 )
 نشر من قبل Marco Piangerelli
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the key indicators used in tracking the evolution of an infectious disease isthe reproduction number. This quantity is usually computed using the reportednumber of cases, but ignoring that many more individuals may be infected (e.g.asymptomatics). We propose a statistical procedure to quantify the impact of un-detected infectious cases on the determination of the effective reproduction number. Our approach is stochastic, data-driven and not relying on any compartmentalmodel. It is applied to the COVID-19 case in eight different countries and all Italianregions, showing that the effect of undetected cases leads to estimates of the effective reproduction numbers larger than those obtained only with the reported cases by factors ranging from two to ten. Our findings urge caution about deciding when and how to relax containment measures based on the value of the reproduction number.



قيم البحث

اقرأ أيضاً

This technical report describes a dynamic causal model of the spread of coronavirus through a population. The model is based upon ensemble or population dynamics that generate outcomes, like new cases and deaths over time. The purpose of this model i s to quantify the uncertainty that attends predictions of relevant outcomes. By assuming suitable conditional dependencies, one can model the effects of interventions (e.g., social distancing) and differences among populations (e.g., herd immunity) to predict what might happen in different circumstances. Technically, this model leverages state-of-the-art variational (Bayesian) model inversion and comparison procedures, originally developed to characterise the responses of neuronal ensembles to perturbations. Here, this modelling is applied to epidemiological populations to illustrate the kind of inferences that are supported and how the model per se can be optimised given timeseries data. Although the purpose of this paper is to describe a modelling protocol, the results illustrate some interesting perspectives on the current pandemic; for example, the nonlinear effects of herd immunity that speak to a self-organised mitigation process.
353 - Xinyi Shen 2020
The COVID-19 has caused more than three million infections and over two hundred thousand deaths by April 20201. Limiting socioeconomic activities (SA) is among the most adopted governmental mitigating efforts to combat the transmission of the virus, though the degree varies dramatically among different regimes2. This study aims to quantify the contribution from the SA and weather conditions to the transmission of COVID-19 at global scale. Ruling out the unobservable factors including medical facilities and other control policies (MOC) through region-by-time fixed effects3,4, we show that the limiting SA has a leading contribution to lower the reproductive number by 18.3%, while weather conditions, including ultraviolet, relative humidity, and wind explain a smaller amount of variation. Temperature might have a non-monotonic impact on the transmission. We further show that in developed countries5 and China, the SA effect is more pronounced whereas the weather effect is significantly downplayed possibly because people tend to stay indoors most of the time with a controlled climate. We finally estimate the reduced reproductive number and the population spared from infections due to restricting SA at 40,964, 180,336, 174,494, in China, United States, and Europe respectively. From late January to mid-April, all regions, except for China, Australia, and south Korea show a steep upward trend of spared infections due to restricting SA. US and Europe, in particular, show far steeper upward trends of spared infections in the analyzed timeframe, signaling a greater risk of reopening the economy too soon.
We recently described a dynamic causal model of a COVID-19 outbreak within a single region. Here, we combine several of these (epidemic) models to create a (pandemic) model of viral spread among regions. Our focus is on a second wave of new cases tha t may result from loss of immunity--and the exchange of people between regions--and how mortality rates can be ameliorated under different strategic responses. In particular, we consider hard or soft social distancing strategies predicated on national (Federal) or regional (State) estimates of the prevalence of infection in the population. The modelling is demonstrated using timeseries of new cases and deaths from the United States to estimate the parameters of a factorial (compartmental) epidemiological model of each State and, crucially, coupling between States. Using Bayesian model reduction, we identify the effective connectivity between States that best explains the initial phases of the outbreak in the United States. Using the ensuing posterior parameter estimates, we then evaluate the likely outcomes of different policies in terms of mortality, working days lost due to lockdown and demands upon critical care. The provisional results of this modelling suggest that social distancing and loss of immunity are the two key factors that underwrite a return to endemic equilibrium.
OBJECTIVES: to describe the first wave of the COVID-19 pandemic with a focus on undetected cases and to evaluate different post-lockdown scenarios. DESIGN: the study introduces a SEIR compartmental model, taking into account the region-specific fract ion of undetected cases, the effects of mobility restrictions, and the personal protective measures adopted, such as wearing a mask and washing hands frequently. SETTING AND PARTICIPANTS: the model is experimentally validated with data of all the Italian regions, some European countries, and the US. MAIN OUTCOME MEASURES: the accuracy of the model results is measured through the mean absolute percentage error (MAPE) and Lewis criteria; fitting parameters are in good agreement with previous literature. RESULTS: the epidemic curves for different countries and the amount of undetected and asymptomatic cases are estimated, which are likely to represent the main source of infections in the near future. The model is applied to the Hubei case study, which is the first place to relax mobility restrictions. Results show different possible scenarios. Mobility and the adoption of personal protective measures greatly influence the dynamics of the infection, determining either a huge and rapid secondary epidemic peak or a more delayed and manageable one. CONCLUSIONS: mathematical models can provide useful insights for healthcare decision makers to determine the best strategy in case of future outbreaks.
86 - Yunseo Choi , James Unwin 2020
Redlining is the discriminatory practice whereby institutions avoided investment in certain neighborhoods due to their demographics. Here we explore the lasting impacts of redlining on the spread of COVID-19 in New York City (NYC). Using data availab le through the Home Mortgage Disclosure Act, we construct a redlining index for each NYC census tract via a multi-level logistical model. We compare this redlining index with the COVID-19 statistics for each NYC Zip Code Tabulation Area. Accurate mappings of the pandemic would aid the identification of the most vulnerable areas and permit the most effective allocation of medical resources, while reducing ethnic health disparities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا