ترغب بنشر مسار تعليمي؟ اضغط هنا

CO and HCN isotopologue ratios in the outflows of AGB stars

79   0   0.0 ( 0 )
 نشر من قبل Maryam Saberi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Isotopologue line intensity ratios of circumstellar molecules have been widely used to trace the photospheric elemental isotopic ratios of evolved stars. However, depending on the molecular species and the physical conditions of the environment, the circumstellar isotopologue ratio may deviate considerably from the stellar atmospheric value. In this paper, we aim to examine how the CO and HCN abundance ratios vary radially due to chemical reactions in the outflows of AGB stars and the effect of excitation and optical depth on the resulting line intensity ratios. We find that the circumstellar 12CO/13CO can deviate from its atmospheric value by up to 25-94% and 6-60% for C- and O-type CSEs, respectively. We show that variations of the intensity of the ISRF and the gas kinetic temperature can significantly influence the CO isotopologue ratio in the outer CSEs. On the contrary, the H12CN/H13CN ratio is stable for all tested mass-loss rates. The RT modeling shows that the integrated line intensity ratio of CO of different rotational transitions varies significantly for stars with intermediate mass-loss rates due to combined chemical and excitation effects. In contrast, the excitation conditions for the both HCN isotopologues are the same. We demonstrate the importance of using the isotopologue abundance profiles from chemical models as inputs to RT models in the interpretation of isotopologue observations. Previous studies of CO isotopologue ratios are based on multi-transition data for individual sources and it is difficult to estimate the errors in the reported values due to assumptions that are not entirely correct according to this study. If anything, previous studies may have overestimated the circumstellar 12CO/13CO abundance ratio. The use of the HCN as a tracer of C isotope ratios is affected by fewer complicating problems, provided one accounts corrections for high optical depths.

قيم البحث

اقرأ أيضاً

Jets from young stellar objects provide insight into the workings of the beating heart at the centre of star forming cores. In some cases, multiple pulsed outflows are detected such as the atomic and molecular jets from a proposed binary system in th e T,Tauri star HH30. We investigate here the development and propagation of duelling atomic and molecular outflows stemming from the two stars in co-orbit. We perform a series of numerical experiments with the {small ZEUS-MP} code with enhanced cooling and chemistry modules. The aim of this work is to identify signatures on scales of order 100 AU. The jet sources are off the grid domain and so it is the propagation and interaction from ~ 20AU out to 100,AU simulated here. We find that the molecular flow from the orbiting source significantly disturbs the atomic jet, deflecting and twisting the jet and disrupting the jet knots. Regions of high ionisation are generated as the atomic jet rams through the dense molecular outflow. Synthetic images in atomic and molecular lines are presented which demonstrate identifying signatures. In particular, the structure within the atomic jet is lost and H-alpha may trace the walls of the present CO cavity or where the walls have been recently. These results provide a framework for the interpretation of upcoming high resolution observations.
(abridged) Our aim is to determine the radial abundance profile of SiO and HCN throughout the stellar outflow of R Dor, an oxygen-rich AGB star with a low mass-loss rate. We have analysed molecular transitions of CO, SiO, and HCN measured with the AP EX telescope and all three instruments on the Herschel Space Observatory, together with literature data. Photometric data and the infrared spectrum measured by ISO-SWS were used to constrain the dust component of the outflow. Using both continuum and line radiative transfer methods, a physical envelope model of both gas and dust was established. We have performed an analysis of the SiO and HCN molecular transitions in order to calculate their abundances. We have obtained an envelope model that describes the dust and the gas in the outflow, and determined the abundance of SiO and HCN throughout the region of the outflow probed by our molecular data. For SiO, we find that the initial abundance lies between $5.5 times 10^{-5}$ and $6.0 times 10^{-5}$ w.r.t. H$_2$. The abundance profile is constant up to $60 pm 10 R_*$, after which it declines following a Gaussian profile with an $e$-folding radius of $3.5 pm 0.5 times 10^{13}$ cm. For HCN, we find an initial abundance of $5.0 times 10^{-7}$ w.r.t. H$_2$. The Gaussian profile that describes the decline starts at the stellar surface and has an $e$-folding radius $r_e$ of $1.85 pm 0.05 times 10^{15}$ cm. We cannot to unambiguously identify the mechanism by which SiO is destroyed at $60 pm 10 R_*$. The initial abundances found are larger than previously determined (except for one previous study on SiO), which might be due to the inclusion of higher-$J$ transitions. The difference in abundance for SiO and HCN compared to high mass-loss rate Mira star IK Tau might be due to different pulsation characteristics of the central star and/or a difference in dust condensation physics.
The mass of a protoplanetary disk limits the formation and future growth of any planet. Masses of protoplanetary disks are usually calculated from measurements of the dust continuum emission by assuming an interstellar gas-to-dust ratio. To investiga te the utility of CO as an alternate probe of disk mass, we use ALMA to survey $^{13}$CO and C$^{18}$O J = $3-2$ line emission from a sample of 93 protoplanetary disks around stars and brown dwarfs with masses from 0.03 -- 2 M$_{odot}$ in the nearby Chamaeleon I star-forming region. We detect $^{13}$CO emission from 17 sources and C$^{18}$O from only one source. Gas masses for disks are then estimated by comparing the CO line luminosities to results from published disk models that include CO freeze-out and isotope-selective photodissociation. Under the assumption of a typical ISM CO-to-H$_2$ ratios of $10^{-4}$, the resulting gas masses are implausibly low, with an average gas mass of $sim$ 0.05 M$_{Jup}$ as inferred from the average flux of stacked $^{13}$CO lines. The low gas masses and gas-to-dust ratios for Cha I disks are both consistent with similar results from disks in the Lupus star-forming region. The faint CO line emission may instead be explained if disks have much higher gas masses, but freeze-out of CO or complex C-bearing molecules is underestimated in disk models. The conversion of CO flux to CO gas mass also suffers from uncertainties in disk structures, which could affect gas temperatures. CO emission lines will only be a good tracer of the disk mass when models for C and CO depletion are confirmed to be accurate.
Context: Low- and intermediate-mass stars lose most of their stellar mass at the end of their lives on the asymptotic giant branch (AGB). Determining gas and dust mass-loss rates (MLRs) is important in quantifying the contribution of evolved stars to the enrichment of the interstellar medium. Aims: Attempt to, for the first time, spectrally resolve CO thermal line emission in a small sample of AGB stars in the Large Magellanic Cloud. Methods: ALMA was used to observe 2 OH/IR stars and 4 carbon stars in the LMC in the CO J= 2-1 line. Results: We present the first measurement of expansion velocities in extragalactic carbon stars. All four C-stars are detected and wind expansion velocities and stellar velocities are directly measured. Mass-loss rates are derived from modelling the spectral energy distribution and Spitzer/IRS spectrum with the DUSTY code. Gas-to-dust ratios are derived that make the predicted velocities agree with the observed ones. The expansion velocities and MLRs are compared to a Galactic sample of well-studied relatively low MLRs stars supplemented with extreme C-stars that have properties more similar to the LMC targets. Gas MLRs derived from a simple formula are significantly smaller than derived from the dust modelling, indicating an order of magnitude underestimate of the estimated CO abundance, time-variable mass loss, or that the CO intensities in LMC stars are lower than predicted by the formula derived for Galactic objects. This could be related to a stronger interstellar radiation field in the LMC. Conclusions: Although the LMC sample is small and the comparison to Galactic stars is non-trivial because of uncertainties in their distances it appears that for C stars the wind expansion velocities in the LMC are lower than in the solar neighbourhood, while the MLRs appear similar. This is in agreement with dynamical dust-driven wind models.
ALMA observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars sh ould be ~1.2-3.5 x 10^-7 solar masses per year. We would naively expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 47 Tuc, we conclude CO should be dissociated abnormally close to the stars. We estimate that the CO envelopes will be truncated at a few hundred stellar radii from their host stars and that the line intensities are about two orders of magnitude below our current detection limits. The truncation of CO envelopes should be important for AGB stars in dense clusters. Observing the CO (3-2) and higher transitions and targeting stars far from the centres of clusters should result in the detections needed to measure the outflow velocities from these stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا