ترغب بنشر مسار تعليمي؟ اضغط هنا

Compact Distributed Certification of Planar Graphs

131   0   0.0 ( 0 )
 نشر من قبل Laurent Feuilloley
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Naor, Parter, and Yogev (SODA 2020) have recently demonstrated the existence of a emph{distributed interactive proof} for planarity (i.e., for certifying that a network is planar), using a sophisticated generic technique for constructing distributed IP protocols based on sequential IP protocols. The interactive proof for planarity is based on a distributed certification of the correct execution of any given sequential linear-time algorithm for planarity testing. It involves three interactions between the prover and the randomized distributed verifier (i.e., it is a dMAM/ protocol), and uses small certificates, on $O(log n)$ bits in $n$-node networks. We show that a single interaction from the prover suffices, and randomization is unecessary, by providing an explicit description of a emph{proof-labeling scheme} for planarity, still using certificates on just $O(log n)$ bits. We also show that there are no proof-labeling schemes -- in fact, even no emph{locally checkable proofs} -- for planarity using certificates on $o(log n)$ bits.



قيم البحث

اقرأ أيضاً

131 - Laurent Feuilloley 2019
A distributed proof (also known as local certification, or proof-labeling scheme) is a mechanism to certify that the solution to a graph problem is correct. It takes the form of an assignment of labels to the nodes, that can be checked locally. There exists such a proof for the minimum spanning tree problem, using $O(log n log W)$ bit labels (where $n$ is the number of nodes in the graph, and $W$ is the largest weight of an edge). This is due to Korman and Kutten who describe it in concise and formal manner in [Korman and Kutten 07]. In this note, we propose a more intuitive description of the result, as well as a gentle introduction to the problem.
We show that there is no deterministic local algorithm (constant-time distributed graph algorithm) that finds a $(7-epsilon)$-approximation of a minimum dominating set on planar graphs, for any positive constant $epsilon$. In prior work, the best low er bound on the approximation ratio has been $5-epsilon$; there is also an upper bound of $52$.
64 - Laurent Feuilloley 2019
A distributed graph algorithm is basically an algorithm where every node of a graph can look at its neighborhood at some distance in the graph and chose its output. As distributed environment are subject to faults, an important issue is to be able to check that the output is correct, or in general that the network is in proper configuration with respect to some predicate. One would like this checking to be very local, to avoid using too much resources. Unfortunately most predicates cannot be checked this way, and that is where certification comes into play. Local certification (also known as proof-labeling schemes, locally checkable proofs or distributed verification) consists in assigning labels to the nodes, that certify that the configuration is correct. There are several point of view on this topic: it can be seen as a part of self-stabilizing algorithms, as labeling problem, or as a non-deterministic distributed decision. This paper is an introduction to the domain of local certification, giving an overview of the history, the techniques and the current research directions.
Naor, Parter, and Yogev [SODA 2020] recently designed a compiler for automatically translating standard centralized interactive protocols to distributed interactive protocols, as introduced by Kol, Oshman, and Saxena [PODC 2018]. In particular, by us ing this compiler, every linear-time algorithm for deciding the membership to some fixed graph class can be translated into a $mathsf{dMAM}(O(log n))$ protocol for this class, that is, a distributed interactive protocol with $O(log n)$-bit proof size in $n$-node graphs, and three interactions between the (centralizer) computationally-unbounded but non-trustable prover Merlin, and the (decentralized) randomized computationally-limited verifier Arthur. As a corollary, there is a $mathsf{dMAM}(O(log n))$ protocol for the class of planar graphs, as well as for the class of graphs with bounded genus. We show that there exists a distributed interactive protocol for the class of graphs with bounded genus performing just a single interaction, from the prover to the verifier, yet preserving proof size of $O(log n)$ bits. This result also holds for the class of graphs with bounded demi-genus, that is, graphs that can be embedded on a non-orientable surface of bounded genus. The interactive protocols described in this paper are actually proof-labeling schemes, i.e., a subclass of interactive protocols, previously introduced by Korman, Kutten, and Peleg [PODC 2005]. In particular, these schemes do not require any randomization from the verifier, and the proofs may often be computed a priori, at low cost, by the nodes themselves. Our results thus extend the recent proof-labeling scheme for planar graphs by Feuilloley et al. [PODC 2020], to graphs of bounded genus, and to graphs of bounded demigenus.
A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and vs neighbors. Such colorings have applications in wirel ess networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number chi_CF(G) (the smallest k for which conflict-free k-colorings exist). We provide results both for closed neighborhoods N[v], for which a vertex v is a member of its neighborhood, and for open neighborhoods N(v), for which vertex v is not a member of its neighborhood. For closed neighborhoods, we prove the conflict-free variant of the famous Hadwiger Conjecture: If an arbitrary graph G does not contain K_{k+1} as a minor, then chi_CF(G) <= k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. We also give a complete characterization of the computational complexity of conflict-free coloring. Deciding whether chi_CF(G)<= 1 is NP-complete for planar graphs G, but polynomial for outerplanar graphs. Furthermore, deciding whether chi_CF(G)<= 2 is NP-complete for planar graphs G, but always true for outerplanar graphs. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs. For open neighborhoods, we show that every planar bipartite graph has a conflict-free coloring with at most four colors; on the other hand, we prove that for k in {1,2,3}, it is NP-complete to decide whether a planar bipartite graph has a conflict-free k-coloring. Moreover, we establish that any general} planar graph has a conflict-free coloring with at most eight colors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا