ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Mixture Regression Network with Local Counting Map for Crowd Counting

68   0   0.0 ( 0 )
 نشر من قبل Xiyang Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The crowd counting task aims at estimating the number of people located in an image or a frame from videos. Existing methods widely adopt density maps as the training targets to optimize the point-to-point loss. While in testing phase, we only focus on the differences between the crowd numbers and the global summation of density maps, which indicate the inconsistency between the training targets and the evaluation criteria. To solve this problem, we introduce a new target, named local counting map (LCM), to obtain more accurate results than density map based approaches. Moreover, we also propose an adaptive mixture regression framework with three modules in a coarse-to-fine manner to further improve the precision of the crowd estimation: scale-aware module (SAM), mixture regression module (MRM) and adaptive soft interval module (ASIM). Specifically, SAM fully utilizes the context and multi-scale information from different convolutional features; MRM and ASIM perform more precise counting regression on local patches of images. Compared with current methods, the proposed method reports better performances on the typical datasets. The source code is available at https://github.com/xiyang1012/Local-Crowd-Counting.

قيم البحث

اقرأ أيضاً

158 - Kun Zhao , Luchuan Song , Bin Liu 2021
Crowd counting is a challenging task due to the issues such as scale variation and perspective variation in real crowd scenes. In this paper, we propose a novel Cascaded Residual Density Network (CRDNet) in a coarse-to-fine approach to generate the h igh-quality density map for crowd counting more accurately. (1) We estimate the residual density maps by multi-scale pyramidal features through cascaded residual density modules. It can improve the quality of density map layer by layer effectively. (2) A novel additional local count loss is presented to refine the accuracy of crowd counting, which reduces the errors of pixel-wise Euclidean loss by restricting the number of people in the local crowd areas. Experiments on two public benchmark datasets show that the proposed method achieves effective improvement compared with the state-of-the-art methods.
We study video crowd counting, which is to estimate the number of objects (people in this paper) in all the frames of a video sequence. Previous work on crowd counting is mostly on still images. There has been little work on how to properly extract a nd take advantage of the spatial-temporal correlation between neighboring frames in both short and long ranges to achieve high estimation accuracy for a video sequence. In this work, we propose Monet, a novel and highly accurate motion-guided non-local spatial-temporal network for video crowd counting. Monet first takes people flow (motion information) as guidance to coarsely segment the regions of pixels where a person may be. Given these regions, Monet then uses a non-local spatial-temporal network to extract spatial-temporally both short and long-range contextual information. The whole network is finally trained end-to-end with a fused loss to generate a high-quality density map. Noting the scarcity and low quality (in terms of resolution and scene diversity) of the publicly available video crowd datasets, we have collected and built a large-scale video crowd counting datasets, VidCrowd, to contribute to the community. VidCrowd contains 9,000 frames of high resolution (2560 x 1440), with 1,150,239 head annotations captured in different scenes, crowd density and lighting in two cities. We have conducted extensive experiments on the challenging VideoCrowd and two public video crowd counting datasets: UCSD and Mall. Our approach achieves substantially better performance in terms of MAE and MSE as compared with other state-of-the-art approaches.
Automatic estimation of the number of people in unconstrained crowded scenes is a challenging task and one major difficulty stems from the huge scale variation of people. In this paper, we propose a novel Deep Structured Scale Integration Network (DS SINet) for crowd counting, which addresses the scale variation of people by using structured feature representation learning and hierarchically structured loss function optimization. Unlike conventional methods which directly fuse multiple features with weighted average or concatenation, we first introduce a Structured Feature Enhancement Module based on conditional random fields (CRFs) to refine multiscale features mutually with a message passing mechanism. In this module, each scale-specific feature is considered as a continuous random variable and passes complementary information to refine the features at other scales. Second, we utilize a Dilated Multiscale Structural Similarity loss to enforce our DSSINet to learn the local correlation of peoples scales within regions of various size, thus yielding high-quality density maps. Extensive experiments on four challenging benchmarks well demonstrate the effectiveness of our method. Specifically, our DSSINet achieves improvements of 9.5% error reduction on Shanghaitech dataset and 24.9% on UCF-QNRF dataset against the state-of-the-art methods.
126 - Xiaowen Shi , Xin Li , Caili Wu 2020
Automatic analysis of highly crowded people has attracted extensive attention from computer vision research. Previous approaches for crowd counting have already achieved promising performance across various benchmarks. However, to deal with the real situation, we hope the model run as fast as possible while keeping accuracy. In this paper, we propose a compact convolutional neural network for crowd counting which learns a more efficient model with a small number of parameters. With three parallel filters executing the convolutional operation on the input image simultaneously at the front of the network, our model could achieve nearly real-time speed and save more computing resources. Experiments on two benchmarks show that our proposed method not only takes a balance between performance and efficiency which is more suitable for actual scenes but also is superior to existing light-weight models in speed.
Significant progress on the crowd counting problem has been achieved by integrating larger context into convolutional neural networks (CNNs). This indicates that global scene context is essential, despite the seemingly bottom-up nature of the problem . This may be explained by the fact that context knowledge can adapt and improve local feature extraction to a given scene. In this paper, we therefore investigate the role of global context for crowd counting. Specifically, a pure transformer is used to extract features with global information from overlapping image patches. Inspired by classification, we add a context token to the input sequence, to facilitate information exchange with tokens corresponding to image patches throughout transformer layers. Due to the fact that transformers do not explicitly model the tried-and-true channel-wise interactions, we propose a token-attention module (TAM) to recalibrate encoded features through channel-wise attention informed by the context token. Beyond that, it is adopted to predict the total person count of the image through regression-token module (RTM). Extensive experiments demonstrate that our method achieves state-of-the-art performance on various datasets, including ShanghaiTech, UCF-QNRF, JHU-CROWD++ and NWPU. On the large-scale JHU-CROWD++ dataset, our method improves over the previous best results by 26.9% and 29.9% in terms of MAE and MSE, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا