ترغب بنشر مسار تعليمي؟ اضغط هنا

Index theorem on chiral Landau bands for topological fermions

56   0   0.0 ( 0 )
 نشر من قبل Yuxin Zhao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological fermions as excitations from multi-degenerate Fermi points have been attracting increasing interests in condensed matter physics. They are characterized by topological charges, and magnetic fields are usually applied in experiments for their detection. Here we present an index theorem that reveals the intrinsic connection between the topological charge of a Fermi point and the in-gap modes in the Landau band structure. The proof is based on mapping fermions under magnetic fields to a topological insulator whose topological number is exactly the topological charge of the Fermi point. Our work lays a solid foundation for the study of intriguing magneto-response effects of topological fermions.

قيم البحث

اقرأ أيضاً

The recent theoretical prediction and experimental realization of topological insulators (TI) has generated intense interest in this new state of quantum matter. The surface states of a three-dimensional (3D) TI such as Bi_2Te_3, Bi_2Se_3 and Sb_2Te_ 3 consist of a single massless Dirac cones. Crossing of the two surface state branches with opposite spins in the materials is fully protected by the time reversal (TR) symmetry at the Dirac points, which cannot be destroyed by any TR invariant perturbation. Recent advances in thin-film growth have permitted this unique two-dimensional electron system (2DES) to be probed by scanning tunneling microscopy (STM) and spectroscopy (STS). The intriguing TR symmetry protected topological states were revealed in STM experiments where the backscattering induced by non-magnetic impurities was forbidden. Here we report the Landau quantization of the topological surface states in Bi_2Se_3 in magnetic field by using STM/STS. The direct observation of the discrete Landau levels (LLs) strongly supports the 2D nature of the topological states and gives direct proof of the nondegenerate structure of LLs in TI. We demonstrate the linear dispersion of the massless Dirac fermions by the square-root dependence of LLs on magnetic field. The formation of LLs implies the high mobility of the 2DES, which has been predicted to lead to topological magneto-electric effect of the TI.
173 - Ken Shiozaki , Takahiro Fukui , 2012
We apply the Niemi-Semenoff index theorem to an s-wave superconductor junction system attached with a magnetic insulator on the surface of a three-dimensional topological insulator. We find that the total number of the Majorana zero energy bound stat es is governed not only by the gapless helical mode but also by the massive modes localized at the junction interface. The result implies that the topological protection for Majorana zero modes in class D heterostructure junctions may be broken down under a particular but realistic condition.
The intense search for topological superconductivity is inspired by the prospect that it hosts Majorana quasiparticles. We explore in this work the optimal design for producing topological superconductivity by combining a quantum Hall state with an o rdinary superconductor. To this end, we consider a microscopic model for a topologically trivial two-dimensional p-wave superconductor exposed to a magnetic field, and find that the interplay of superconductivity and Landau level physics yields a rich phase diagram of states as a function of $mu/t$ and $Delta/t$, where $mu$, $t$ and $Delta$ are the chemical potential, hopping strength, and the amplitude of the superconducting gap. In addition to quantum Hall states and topologically trivial p-wave superconductor, the phase diagram also accommodates regions of topological superconductivity. Most importantly, we find that application of a non-uniform, periodic magnetic field produced by a square or a hexagonal lattice of $h/e$ fluxoids greatly facilitates regions of topological superconductivity in the limit of $Delta/trightarrow 0$. In contrast, a uniform magnetic field, a hexagonal Abrikosov lattice of $h/2e$ fluxoids, or a one dimensional lattice of stripes produces topological superconductivity only for sufficiently large $Delta/t$.
We construct an action for the composite Dirac fermion consistent with symmetries of electrons projected to the lowest Landau level. First we construct a generalization of the $g=2$ electron that gives a smooth massless limit on any curved background . Using the symmetries of the microscopic electron theory in this massless limit we find a number of constraints on any low-energy effective theory. We find that any low-energy description must couple to a geometry which exhibits nontrivial curvature even on flat space-times. Any composite fermion must have an electric dipole moment proportional and orthogonal to the composite fermions wavevector. We construct the effective action for the composite Dirac fermion and calculate the physical stress tensor and current operators for this theory.
There is increasing experimental evidence for fractional quantum Hall effect at filling factor $ u=2+3/8$. Modeling it as a system of composite fermions, we study the problem of interacting composite fermions by a number of methods. In our variationa l study, we consider the Fermi sea, the Pfaffian paired state, and bubble and stripe phases of composite fermions, and find that the Fermi sea state is favored for a wide range of transverse thickness. However, when we incorporate interactions between composite fermions through composite-fermion diagonalization on systems with up to 25 composite fermions, we find that a gap opens at the Fermi level, suggesting that inter-composite fermion interaction can induce fractional quantum Hall effect at $ u=2+3/8$. The resulting state is seen to be distinct from the Pfaffian wave function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا