ﻻ يوجد ملخص باللغة العربية
Incorporating multifunctionality along with the spin-related phenomenon in a single device is of great interest for the development of next generation spintronic devices. One of these challenges is to couple the photo-response of the device together with its magneto-response to exploit the multifunctional operation at room temperature. Here, the multifunctional operation of a single layer p-type molecular spin valve is presented, where the device shows a photovoltaic effect at the room temperature on a transparent glass substrate. The generated photovoltage is almost three times larger than the applied bias to the device which facilitates the modulation of the magnetic response of the device both with bias and light. It is observed that the photovoltage modulation with light and magnetic field is linear with the light intensity. The device shows an increase in power conversion efficiency under magnetic field, an ability to invert the current with magnetic field and under certain conditions it can act as a spin-photodetector with zero power consumption in the standby mode. The room temperature exploitation of the interplay among light, bias and magnetic field in the single device with a p-type molecule opens a way towards more complex and efficient operation of a complete spin-photovoltaic cell.
Room temperature operation of a spin exclusive or (XOR) gate was demonstrated in lateral spin valve devices with nondegenerate silicon (Si) channels. The spin XOR gate is a fundamental part of the magnetic logic gate (MLG) that enables reconfigurable
Magnetic skyrmions have attracted considerable interest, especially after their recent experimental demonstration at room temperature in multilayers. The robustness, nanoscale size and non-volatility of skyrmions have triggered a substantial amount o
The implementation of quantum networks involving quantum memories and photonic channels without the need for cryogenics would be a major technological breakthrough. Nitrogen-vacancy centers have excellent spin properties even at room temperature, but
Methods of optical dynamic nuclear polarization (DNP) open the door to the replenishable hyperpolarization of nuclear spins, boosting their NMR/MRI signature by orders of magnitude. Nanodiamond powder rich in negatively charged Nitrogen Vacancy (NV)
Quantum spin Hall (QSH) materials promise revolutionary device applications based on dissipationless propagation of spin currents. They are two-dimensional (2D) representatives of the family of topological insulators, which exhibit conduction channel