ﻻ يوجد ملخص باللغة العربية
Let $c_1(x),c_2(x),f_1(x),f_2(x)$ be polynomials with rational coefficients. With obvious exceptions, there can be at most finitely many roots of unity among the zeros of the polynomials $c_1(x)f_1(x)^n+c_2(x)f_2(x)^n$ with $n=1,2ldots$. We estimate the orders of these roots of unity in terms of the degrees and the heights of the polynomials $c_i$ and $f_i$.
Motivated by questions in number theory, Myerson asked how small the sum of 5 complex nth roots of unity can be. We obtain a uniform bound of O(n^{-4/3}) by perturbing the vertices of a regular pentagon, improving to O(n^{-7/3}) infinitely often. T
Let $p>3$ be a prime. Gauss first introduced the polynomial $S_p(x)=prod_{c}(x-zeta_p^c),$ where $0<c<p$ and $c$ varies over all quadratic residues modulo $p$ and $zeta_p=e^{2pi i/p}$. Later Dirichlet investigated this polynomial and used this to sol
We continue the first and second authors study of $q$-commutative power series rings $R=k_q[[x_1,ldots,x_n]]$ and Laurent series rings $L=k_q[[x^{pm 1}_1,ldots,x^{pm 1}_n]]$, specializing to the case in which the commutation parameters $q_{ij}$ are a
In 2007, G.E. Andrews introduced the $(n+1)$-variable combinatorial generating function $R_n(x_1,x_2,cdots,x_n;q)$ for ranks of $n$-marked Durfee symbols, an $(n+1)$-dimensional multisum, as a vast generalization to the ordinary two-variable partitio
Understanding the relationship between mock modular forms and quantum modular forms is a problem of current interest. Both mock and quantum modular forms exhibit modular-like transformation properties under suitable subgroups of $rm{SL}_2(mathbb Z)$,