ﻻ يوجد ملخص باللغة العربية
Our understanding of observed Gravitational Waves (GWs) comes from matching data to known signal models describing General Relativity (GR). These models, expressed in the post-Newtonian formalism, contain the mathematical constant $pi$. Allowing $pi$ to vary thus enables a strong, universal and generalisable null test of GR. From a population of 22 GW observations, we make an astrophysical measurement of $pi=3.115^{+0.048}_{-0.088}$, and prefer GR as the correct theory of gravity with a Bayes factor of 321. We find the variable $pi$ test robust against simulated beyond-GR effects.
Gravitational wave observations of compact binary coalescences provide precision probes of strong-field gravity. There is thus now a standard set of null tests of general relativity (GR) applied to LIGO-Virgo detections and many more such tests propo
Gravitational waves enable tests of general relativity in the highly dynamical and strong-field regime. Using events detected by LIGO-Virgo up to 1 October 2019, we evaluate the consistency of the data with predictions from the theory. We first estab
The direct detection of gravitational waves with upcoming second-generation gravitational wave detectors such as Advanced LIGO and Virgo will allow us to probe the genuinely strong-field dynamics of general relativity (GR) for the first time. We pres
Two new observational windows have been opened to strong gravitational physics: gravitational waves, and very long baseline interferometry. This suggests observational searches for new phenomena in this regime, and in particular for those necessary t
Gravitational wave astronomy has tremendous potential for studying extreme astrophysical phenomena and exploring fundamental physics. The waves produced by binary black hole mergers will provide a pristine environment in which to study strong field,