ترغب بنشر مسار تعليمي؟ اضغط هنا

A high-energy neutrino coincident with a tidal disruption event

166   0   0.0 ( 0 )
 نشر من قبل Robert Stein
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic neutrinos provide a unique window into the otherwise-hidden mechanism of particle acceleration in astrophysical objects. A flux of high-energy neutrinos was discovered in 2013, and the IceCube Collaboration recently associated one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the association of a radio-emitting tidal disruption event (AT2019dsg) with another high-energy neutrino, identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility (ZTF). The probability of finding any radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multi-zone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for PeV neutrino production. The association suggests that tidal disruption events contribute to the cosmic neutrino flux. Unlike previous work which considered the rare subset of tidal disruption events with relativistic jets, our observations of AT2019dsg suggest an empirical model with a mildly-relativistic outflow.

قيم البحث

اقرأ أيضاً

78 - Ruo-Yu Liu , Kai Wang , Rui Xue 2018
Although many high-energy neutrinos detected by the IceCube telescope are believed to have anextraterrestrial origin, their astrophysical sources remain a mystery. Recently, an unprecedenteddiscovery of a high-energy muon neutrino event coincident wi th a multiwavelength flare from ablazar, TXS 0506+056, shed some light on the origin of the neutrinos. It is usually believed that ablazar is produced by a relativistic jet launched from an accreting supermassive black hole (SMBH).Here we show that the high-energy neutrino event can be interpreted by the inelastic hadronuclearinteractions between the accelerated cosmic-ray protons in the relativistic jet and the dense gasclouds in the vicinity of the SMBH. Such a scenario only requires a moderate proton power in thejet, which could be much smaller than that required in the conventional hadronic model whichinstead calls upon the photomeson process. Meanwhile, the flux of the multiwavelength flare fromthe optical to gamma-ray band can be well explained by invoking a second radiation zone in thejet at a larger distance to the SMBH. In our model, the neutrino emission lasts a shorter time thanthe multiwavelength flare so the neutrino event is not necessarily correlated with the flare but it is probably accompanied by a spectrum hardening above a few GeV.
A tidal disruption event (TDE) involves the tidal shredding of a star in the vicinity of a dormant supermassive black hole. The nearby ($approx$230 mega-parsec) radio-quiet (radio luminosity of $4 times 10^{38}$ erg s$^{-1}$) AT2019dsg is the first T DE potentially associated with a neutrino event. The origin of the non-thermal emission in AT2019dsg remains inconclusive; possibilities include a relativistic jet or a sub-relativistic outflow. Distinguishing between them can address neutrino production mechanisms. High resolution very long baseline interferometry monitoring provides uniquely constraining flux densities and proper motion of the ejecta. A non-relativistic (outflow velocity of $approx$0.1 $c$) decelerated expansion in a relatively dense environment is found to produce the radio emission. Neutrino production may be related to the acceleration of protons by the outflow. The present study thus helps exclude jet-related origins for the non-thermal emission and neutrino production, and constrains non-jetted scenarios.
Tidal disruption events (TDE) have been considered as cosmic-ray and neutrino sources for a decade. We suggest two classes of new scenarios for high-energy multi-messenger emission from TDEs that do not have to harbor powerful jets. First, we investi gate high-energy neutrino and gamma-ray production in the core region of a supermassive black hole. In particular, we show that about 1-100 TeV neutrinos and MeV gamma-rays can efficiently be produced in hot coronae around an accretion disk. We also study the consequences of particle acceleration in radiatively inefficient accretion flows (RIAFs). Second, we consider possible cosmic-ray acceleration by sub-relativistic disk-driven winds or interactions between tidal streams, and show that subsequent hadronuclear and photohadronic interactions inside the TDE debris lead to GeV-PeV neutrinos and sub-GeV cascade gamma-rays. We demonstrate that these models should be accompanied by soft gamma-rays or hard X-rays as well as optical/UV emission, which can be used for future observational tests. Although this work aims to present models of non-jetted high-energy emission, we discuss the implications of the TDE AT2019dsg that might coincide with the high-energy neutrino IceCube-191001A, by considering the corona, RIAF, hidden sub-relativistic wind, and hidden jet models. It is not yet possible to be conclusive about their physical association and the expected number of neutrinos is typically much less than unity. We find that the most optimistic cases of the corona and hidden wind models could be consistent with the observation of IceCube-191001A, whereas jet models are unlikely to explain the multi-messenger observations.
75 - R.D. Saxton 2019
Aims. We investigate the evolution of X-ray selected tidal disruption events. Methods. New events are found in near-real time data from XMM-Newton slews and are monitored by multi-wavelength facilities. Results. In August 2016, X-ray emission was det ected from the galaxy XMMSL2 J144605.0+685735 (a.k.a. 2MASX 14460522+6857311), a factor 20 times higher than an upper limit from 25 years earlier. The X-ray flux was flat for ~100 days and then fell by a factor 100 over the following 500 days. The UV flux was stable for the first 400 days before fading by a magnitude, while the optical (U,B,V bands) have been roughly constant for 850 days. Optically, the galaxy appears to be quiescent, at a distance of $127pm{4}$ Mpc (z=$0.029pm{0.001}$) with a spectrum consisting of a young stellar population of age 1-5 Gyr, an older population and a total stellar mass of ~6 x $10^{9}$ solar masses. The bolometric luminosity peaked at L bol ~ $10^{43}$ ergs s$^{-1}$ with an X-ray spectrum that may be modeled by a power-law of $Gamma$~2.6 or Comptonisation of a low-temperature thermal component by thermal electrons. We consider a tidal disruption event to be the most likely cause of the flare. Radio emission was absent in this event down to < 10$mu$Jy, which limits the total energy of a hypothetical off-axis jet to E < 5 x $10^{50}$ ergs. The independent behaviour of the optical, UV and X-ray light curves challenges models where the UV emission is produced by reprocessing of thermal nuclear emission or by stream-stream collisions. We suggest that the observed UV emission may have been produced from a truncated accretion disk and the X-rays from Compton upscattering of these disk photons.
Multiwavelength flares from tidal disruption and accretion of stars can be used to find and study otherwise dormant massive black holes in galactic nuclei. Previous well-monitored candidate flares are short-lived, with most emission confined to withi n ~1 year. Here we report the discovery of a well observed super-long (>11 years) luminous soft X-ray flare from the nuclear region of a dwarf starburst galaxy. After an apparently fast rise within ~4 months a decade ago, the X-ray luminosity, though showing a weak trend of decay, has been persistently high at around the Eddington limit (when the radiation pressure balances the gravitational force). The X-ray spectra are generally soft (steeply declining towards higher energies) and can be described with Comptonized emission from an optically thick low-temperature corona, a super-Eddington accretion signature often observed in accreting stellar-mass black holes. Dramatic spectral softening was also caught in one recent observation, implying either a temporary transition from the super-Eddington accretion state to the standard thermal state or the presence of a transient highly blueshifted (~0.36c) warm absorber. All these properties in concert suggest a tidal disruption event of an unusually long super-Eddington accretion phase that has never been observed before.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا