ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact Parallelization of the Stochastic Simulation Algorithm for Scalable Simulation of Large Biochemical Networks

117   0   0.0 ( 0 )
 نشر من قبل Arthur Goldberg
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Comprehensive simulations of the entire biochemistry of cells have great potential to help physicians treat disease and help engineers design biological machines. But such simulations must model networks of millions of molecular species and reactions. The Stochastic Simulation Algorithm (SSA) is widely used for simulating biochemistry, especially systems with species populations small enough that discreteness and stochasticity play important roles. However, existing serial SSA methods are prohibitively slow for comprehensive networks, and existing parallel SSA methods, which use periodic synchronization, sacrifice accuracy. To enable fast, accurate, and scalable simulations of biochemistry, we present an exact parallel algorithm for SSA that partitions a biochemical network into many SSA processes that simulate in parallel. Our parallel SSA algorithm exactly coordinates the interactions among these SSA processes and the species state they share by structuring the algorithm as a parallel discrete event simulation (DES) application and using an optimistic parallel DES simulator to synchronize the interactions. We anticipate that our method will enable unprecedented biochemical simulations.



قيم البحث

اقرأ أيضاً

Chemical reaction networks (CRNs) are fundamental computational models used to study the behavior of chemical reactions in well-mixed solutions. They have been used extensively to model a broad range of biological systems, and are primarily used when the more traditional model of deterministic continuous mass action kinetics is invalid due to small molecular counts. We present a perfect sampling algorithm to draw error-free samples from the stationary distributions of stochastic models for coupled, linear chemical reaction networks. The state spaces of such networks are given by all permissible combinations of molecular counts for each chemical species, and thereby grow exponentially with the numbers of species in the network. To avoid simulations involving large numbers of states, we propose a subset of chemical species such that coupling of paths started from these states guarantee coupling of paths started from all states in the state space and we show for the well-known Reversible Michaelis-Menten model that the subset does in fact guarantee perfect draws from the stationary distribution of interest. We compare solutions computed in two ways with this algorithm to those found analytically using the chemical master equation and we compare the distribution of coupling times for the two simulation approaches.
Biochemical reaction networks frequently consist of species evolving on multiple timescales. Stochastic simulations of such networks are often computationally challenging and therefore various methods have been developed to obtain sensible stochastic approximations on the timescale of interest. One of the rigorous and popular approaches is the multiscale approximation method for continuous time Markov processes. In this approach, by scaling species abundances and reaction rates, a family of processes parameterized by a scaling parameter is defined. The limiting process of this family is then used to approximate the original process. However, we find that such approximations become inaccurate when combinations of species with disparate abundances either constitute conservation laws or form virtual slow auxiliary species. To obtain more accurate approximation in such cases, we propose here an appropriate modification of the original method.
Motivation: SBML is the most widespread language for the definition of biochemical models. Although dozens of SBML simulators are available, there is a general lack of support to the integration of SBML models within open-standard general-purpose sim ulation ecosystems. This hinders co-simulation and integration of SBML models within larger model networks, in order to, e.g. enable in silico clinical trials of drugs, pharmacological protocols, or engineering artefacts such as biomedical devices against Virtual Physiological Human models. Modelica is one of the most popular existing open-standard general-purpose simulation languages, supported by many simulators. Modelica models are especially suited for the definition of complex networks of heterogeneous models from virtually all application domains. Models written in Modelica (and in 100+ other languages) can be readily exported into black-box Functional Mock-Up Units (FMUs), and seamlessly co-simulated and integrated into larger model networks within open-standard language-independent simulation ecosystems. Results: In order to enable SBML model integration within heterogeneous model networks, we present SBML2Modelica, a software system translating SBML models into well-structured, user-intelligible, easily modifiable Modelica models. SBML2Modelica is SBML Level 3 Version 2-compliant and succeeds on 96.47% of the SBML Test Suite Core (with a few rare, intricate and easily avoidable combinations of constructs unsupported and cleanly signalled to the user). Our experimental campaign on 613 models from the BioModels database (with up to 5438 variables) shows that the major open-source (general-purpose) Modelica and FMU simulators achieve performance comparable to state-of-the-art specialized SBML simulators. Availability and implementation: https://bitbucket.org/mclab/sbml2modelica
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Ru le-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This network-free approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of partial network expansion into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim.
Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environ ment of the cell and its surroundings. We thus sample trajectories of the stochastic process described by the chemical master equation with time-varying propensities. A comparative analysis shows that existing approaches can either fail dramatically, or else can impose impractical computational burdens due to numerical integration of reaction propensities, especially when cell ensembles are studied. Here we introduce the Extrande method which, given a simulated time course of dynamic network inputs, provides a conditionally exact and several orders-of-magnitude faster simulation solution. The new approach makes it feasible to demonstrate, using decision-making by a large population of quorum sensing bacteria, that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate. Our approach has the potential to significantly advance both understanding of molecular systems biology and design of synthetic circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا