ﻻ يوجد ملخص باللغة العربية
We present a computational method for real-time, patient-specific simulation of 2D ultrasound (US) images. The method uses a large number of tracked ultrasound images to learn a function that maps position and orientation of the transducer to ultrasound images. This is a first step towards realistic patient-specific simulations that will enable improved training and retrospective examination of complex cases. Our models can simulate a 2D image in under 4ms (well within real-time constraints), and produce simulated images that preserve the content (anatomical structures and artefacts) of real ultrasound images.
We propose and demonstrate a joint model of anatomical shapes, image features and clinical indicators for statistical shape modeling and medical image analysis. The key idea is to employ a copula model to separate the joint dependency structure from
Manual estimation of fetal Head Circumference (HC) from Ultrasound (US) is a key biometric for monitoring the healthy development of fetuses. Unfortunately, such measurements are subject to large inter-observer variability, resulting in low early-det
Automatic colorectal polyp detection in colonoscopy video is a fundamental task, which has received a lot of attention. Manually annotating polyp region in a large scale video dataset is time-consuming and expensive, which limits the development of d
It is known that changes in the mechanical properties of tissues are associated with the onset and progression of certain diseases. Ultrasound elastography is a technique to characterize tissue stiffness using ultrasound imaging either by measuring t
Large prospective epidemiological studies acquire cardiovascular magnetic resonance (CMR) images for pre-symptomatic populations and follow these over time. To support this approach, fully automatic large-scale 3D analysis is essential. In this work,