ﻻ يوجد ملخص باللغة العربية
We employ the jackknife algorithm to analyze the propagation of the statistical quantum Monte Carlo error through the Bethe--Salpeter equation. This allows us to estimate the error of dynamical mean-field theory calculations of the susceptibility and of dynamical vertex approximation calculations of the self-energy. We find that the different frequency components of the susceptibility are uncorrelated, whereas those of the self-energy are correlated. For improving the quality of the correlation matrix taking sufficiently many jackknife bins is key, while for reducing the standard error of the mean sufficiently many Monte Carlo measurements are necessary. We furthermore show that even in the case of the self-energy, the finite covariance does not have a sizable influence on the analytic continuation.
Extensions of dynamical-mean-field-theory (DMFT) make use of quantum impurity models as non-perturbative and exactly solvable reference systems which are essential to treat the strong electronic correlations. Through the introduction of retarded inte
The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combin
Dynamical mean field methods are used to calculate the phase diagram, many-body density of states, relative orbital occupancy and Fermi surface shape for a realistic model of $LaNiO_3$-based superlattices. The model is derived from density functional
Transition metal oxide heterostructures often, but by far not always, exhibit strong electronic correlations. State-of-the-art calculations account for these by dynamical mean field theory (DMFT). We discuss the physical situations in which DMFT is n
We examine the cluster-size dependence of the cellular dynamical mean-field theory (CDMFT) applied to the two-dimensional Hubbard model. Employing the continuous-time quantum Monte Carlo method as the solver for the effective cluster model, we obtain