ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffraction at the Open-Ended Dielectric-Loaded Circular Waveguide: Rigorous Approach

69   0   0.0 ( 0 )
 نشر من قبل Sergey N. Galyamin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An elegant and convenient rigorous approach for solving circular open-ended dielectric-loaded waveguide diffraction problems is presented. It uses the solution of corresponding Wiener-Hopf-Fock equation and leads to an infinite linear system for reflection coefficients (S-parameters) of the waveguide, the latter can be efficiently solved numerically using the reducing technique. As a specific example directly applicable to beam-driven radiation sources based on dielectric-lined capillaries, diffraction of a slow TM symmetrical mode at the open end of a circular waveguide with uniform dielectric filling is considered. A series of such modes forms the wakefield (Cherenkov radiation field) generated by a charged particle bunch during its passage along the waveguide axis. Calculated S-parameters were compared with those obtained from COMSOL simulation and an excellent agreement is shown. This method is expected to be very convenient for analytical investigation of various electromagnetic interactions of Terahertz (THz) waves (both free and guided) and charged particle bunches with slow-wave structures prospective in context of modern beam-driven THz emitters, THz accererators and THz-based bunch manipulation and bunch diagnostic systems.

قيم البحث

اقرأ أيضاً

A rigorous approach for solving canonical circular open-ended dielectric-lined waveguide diffraction problems is presented. This is continuation of our recent paper [1] where a simpler case of uniform dielectric filling has been considered. Here we d eal with the case of an open-ended circular waveguide with layered dielectric filling which is closer to potential applications. The presented method uses the solution of corresponding Wiener-Hopf-Fock equation and leads to an infinite linear system for reflection coefficients (S-parameters) of the waveguide, the latter can be efficiently solved numerically using the reducing technique. As a specific example directly applicable to beam-driven radiation sources based on dielectric-lined capillaries, diffraction of a slow TM symmetrical mode at the open end of the described waveguide is considered. A series of such modes forms the wakefield (Cherenkov radiation field) generated by a charged particle bunch during its passage along the vacuum channel axis. Calculated S-parameters were compared with those obtained from COMSOL simulation and an excellent agreement was shown. This method is expected to be very convenient for analytical investigation of various electromagnetic interactions of Terahertz (THz) waves (both free and guided) and charged particle bunches with slow-wave structures prospective in context of modern beam-driven THz emitters, THz accererators and THz-based bunch manipulation and bunch diagnostic systems.
A problem of diffraction of a symmetrical transverse magnetic mode $ text{TM}_{0l} $ by an open-ended cylindrical waveguide corrugated inside is considered. A depth and a period of corrugations are supposed to be much less than the wavelength and the waveguide radius. Therefore a corrugated waveguide wall can be described in terms of equivalent boundary conditions, i.e. a corresponding impedance boundary condition can be applied. Both vacuum case and the case of uniform dielectric filling of the waveguide is considered. The diffraction problem is solved using the modified tayloring technique in Jones formulation. Solution of the Wiener-Hopf-Fock equation of the problem is used to obtain an infinite linear system for reflection coefficients, the latter can be solved numerically using the reduction technique.
In this article, a 2D plasmonic waveguide loaded with all dielectric anisotropic metamaterial, consisting of alternative layers of Si-SiO2, has been theoretically proposed and numerically analyzed. Main characteristics of waveguide i.e. propagation c onstant, propagation length and normalized mode area have been calculated for different values of ridge width and height at telecommunication wavelength. The respective 1D structure of the waveguide has been analytically solved for the anisotropic ridge as a single uniaxial medium with dielectric tensor defined by Effective Medium Theory (EMT). The 2D structure has been analyzed numerically through FEM simulation using Mode analysis module in Comsol Multiphysics. Both the EMT and real multilayer structure have been considered in numerical simulations. Such structure with all dielectric metamaterial provides an extra degree of freedom namely fill factor, fraction of Si layer in a Si-SiO2 unit cell, to tune the propagation characteristics compared to the conventional DLSSP waveguide. A wide range of variations in all the characteristics have been observed for different fill factor values. Besides, the effect of the first interface layer has also been considered. Though all dielectric metamaterial has already been utilized in photonic waveguide as cladding, the implementation in plasmonic waveguide has not been investigated yet to our best knowledge. The proposed device might be a potential in deep sub-wavelength optics, PIC and optoelectronics.
We experimentally demonstrate for the first time the degenerate band edge (DBE) condition, namely the degeneracy of four Bloch modes, in loaded circular metallic waveguides. The four modes forming the DBE represent a degeneracy of fourth order occurr ing in a periodic structure where four Bloch modes, two propagating and two evanescent, coalesce. It leads to a very flat wavenumber-frequency dispersion relation, and the finite length structures quality factor scales as $N^5$ where $N$ is the number of unit cells. The proposed waveguide in which DBE is observed here is designed by periodically loading a circular waveguide with misaligned elliptical metallic rings, supported by a low-index dielectric. We validate the existence of the DBE in such structure using measurements and we report good agreement between full-wave simulation and the measured response of the waveguide near the DBE frequency; taking into account metallic losses. We correlate our finding to theoretical and simulation results utilizing various techniques including dispersion synthesis, as well as observing how quality factor and group delay scale as the structure length increases. Moreover, the reported geometry is only an example of metallic waveguide with DBE: DBE and its characteristics can also be designed in many other kinds of waveguides and various applications can be contemplated as high microwave generation in amplifiers and oscillators based on an electron beam interaction or solid state devices, pulse compressors and microwave sensors.
It has been proved that surface plasmon polariton (SPP) can well conserve and transmit the quantum nature of entangled photons. Therefore, further utilization and manipulation of such quantum nature of SPP in a plasmonic chip will be the next task fo r scientists in this field. In quantum logic circuits, the controlled-NOT (CNOT) gate is the key building block. Here, we implement the first plasmonic quantum CNOT gate with several-micrometer footprint by utilizing a single polarization-dependent beam-splitter (PDBS) fabricated on the dielectric-loaded SPP waveguide (DLSPPW). The quantum logic function of the CNOT gate is characterized by the truth table with an average fidelity of. Its entangling ability to transform a separable state into an entangled state is demonstrated with the visibilities of and for non-orthogonal bases. The DLSPPW based CNOT gate is considered to have good integratability and scalability, which will pave a new way for quantum information science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا