ترغب بنشر مسار تعليمي؟ اضغط هنا

Radar-on-Lidar: metric radar localization on prior lidar maps

178   0   0.0 ( 0 )
 نشر من قبل Huan Yin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Radar and lidar, provided by two different range sensors, each has pros and cons of various perception tasks on mobile robots or autonomous driving. In this paper, a Monte Carlo system is used to localize the robot with a rotating radar sensor on 2D lidar maps. We first train a conditional generative adversarial network to transfer raw radar data to lidar data, and achieve reliable radar points from generator. Then an efficient radar odometry is included in the Monte Carlo system. Combining the initial guess from odometry, a measurement model is proposed to match the radar data and prior lidar maps for final 2D positioning. We demonstrate the effectiveness of the proposed localization framework on the public multi-session dataset. The experimental results show that our system can achieve high accuracy for long-term localization in outdoor scenes.



قيم البحث

اقرأ أيضاً

112 - Huan Yin , Yue Wang , Rong Xiong 2021
We present a heterogeneous localization framework for solving radar global localization and pose tracking on pre-built lidar maps. To bridge the gap of sensing modalities, deep neural networks are constructed to create shared embedding space for rada r scans and lidar maps. Herein learned feature embeddings are supportive for similarity measurement, thus improving map retrieval and data matching respectively. In RobotCar and MulRan datasets, we demonstrate the effectiveness of the proposed framework with the comparison to Scan Context and RaLL. In addition, the proposed pose tracking pipeline is with less neural networks compared to the original RaLL.
401 - Huan Yin , Runjian Chen , Yue Wang 2020
Compared to the onboard camera and laser scanner, radar sensor provides lighting and weather invariant sensing, which is naturally suitable for long-term localization under adverse conditions. However, radar data is sparse and noisy, resulting in cha llenges for radar mapping. On the other hand, the most popular available map currently is built by lidar. In this paper, we propose an end-to-end deep learning framework for Radar Localization on Lidar Map (RaLL) to bridge the gap, which not only achieves the robust radar localization but also exploits the mature lidar mapping technique, thus reducing the cost of radar mapping. We first embed both sensor modals into a common feature space by a neural network. Then multiple offsets are added to the map modal for exhaustive similarity evaluation against the current radar modal, yielding the regression of the current pose. Finally, we apply this differentiable measurement model to a Kalman Filter (KF) to learn the whole sequential localization process in an end-to-end manner. textit{The whole learning system is differentiable with the network based measurement model at the front-end and KF at the back-end.} To validate the feasibility and effectiveness, we employ multi-session multi-scene datasets collected from the real world, and the results demonstrate that our proposed system achieves superior performance over $90km$ driving, even in generalization scenarios where the model training is in UK, while testing in South Korea. We also release the source code publicly.
One essential step to realize modern driver assistance technology is the accurate knowledge about the location of static objects in the environment. In this work, we use artificial neural networks to predict the occupation state of a whole scene in a n end-to-end manner. This stands in contrast to the traditional approach of accumulating each detections influence on the occupancy state and allows to learn spatial priors which can be used to interpolate the environments occupancy state. We show that these priors make our method suitable to predict dense occupancy estimations from sparse, highly uncertain inputs, as given by automotive radars, even for complex urban scenarios. Furthermore, we demonstrate that these estimations can be used for large-scale mapping applications.
- Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusi on between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.
73 - Huan Yin , Xuecheng Xu , Yue Wang 2021
Place recognition is critical for both offline mapping and online localization. However, current single-sensor based place recognition still remains challenging in adverse conditions. In this paper, a heterogeneous measurements based framework is pro posed for long-term place recognition, which retrieves the query radar scans from the existing lidar maps. To achieve this, a deep neural network is built with joint training in the learning stage, and then in the testing stage, shared embeddings of radar and lidar are extracted for heterogeneous place recognition. To validate the effectiveness of the proposed method, we conduct tests and generalization experiments on the multi-session public datasets compared to other competitive methods. The experimental results indicate that our model is able to perform multiple place recognitions: lidar-to-lidar, radar-to-radar and radar-to-lidar, while the learned model is trained only once. We also release the source code publicly: https://github.com/ZJUYH/radar-to-lidar-place-recognition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا