ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Quantum Circuits for Accurate State Preparation of Smooth, Differentiable Functions

78   0   0.0 ( 0 )
 نشر من قبل Adam Holmes
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Effective quantum computation relies upon making good use of the exponential information capacity of a quantum machine. A large barrier to designing quantum algorithms for execution on real quantum machines is that, in general, it is intractably difficult to construct an arbitrary quantum state to high precision. Many quantum algorithms rely instead upon initializing the machine in a simple state, and evolving the state through an efficient (i.e. at most polynomial-depth) quantum algorithm. In this work, we show that there exist families of quantum states that can be prepared to high precision with circuits of linear size and depth. We focus on real-valued, smooth, differentiable functions with bounded derivatives on a domain of interest, exemplified by commonly used probability distributions. We further develop an algorithm that requires only linear classical computation time to generate accurate linear-depth circuits to prepare these states, and apply this to well-known and heavily-utilized functions including Gaussian and lognormal distributions. Our procedure rests upon the quantum state representation tool known as the matrix product state (MPS). By efficiently and scalably encoding an explicit amplitude function into an MPS, a high fidelity, linear-depth circuit can directly be generated. These results enable the execution of many quantum algorithms that, aside from initialization, are otherwise depth-efficient.



قيم البحث

اقرأ أيضاً

We present an entanglement analysis of quantum superpositions corresponding to smooth, differentiable, real-valued (SDR) univariate functions. SDR functions are shown to be scalably approximated by low-rank matrix product states, for large system dis cretizations. We show that the maximum von-Neumann bipartite entropy of these functions grows logarithmically with the system size. This implies that efficient low-rank approximations to these functions exist in a matrix product state (MPS) for large systems. As a corollary, we show an upper bound on trace-distance approximation accuracy for a rank-2 MPS as $Omega(log N/N)$, implying that these low-rank approximations can scale accurately for large quantum systems.
The variational quantum eigensolver is one of the most promising approaches for performing chemistry simulations using noisy intermediate-scale quantum (NISQ) processors. The efficiency of this algorithm depends crucially on the ability to prepare mu lti-qubit trial states on the quantum processor that either include, or at least closely approximate, the actual energy eigenstates of the problem being simulated while avoiding states that have little overlap with them. Symmetries play a central role in determining the best trial states. Here, we present efficient state preparation circuits that respect particle number, total spin, spin projection, and time-reversal symmetries. These circuits contain the minimal number of variational parameters needed to fully span the appropriate symmetry subspace dictated by the chemistry problem while avoiding all irrelevant sectors of Hilbert space. We show how to construct these circuits for arbitrary numbers of orbitals, electrons, and spin quantum numbers, and we provide explicit decompositions and gate counts in terms of standard gate sets in each case. We test our circuits in quantum simulations of the $H_2$ and $LiH$ molecules and find that they outperform standard state preparation methods in terms of both accuracy and circuit depth.
While there has been extensive previous work on efficient quantum algorithms for linear differential equations, analogous progress for nonlinear differential equations has been severely limited due to the linearity of quantum mechanics. Despite this obstacle, we develop a quantum algorithm for initial value problems described by dissipative quadratic $n$-dimensional ordinary differential equations. Assuming $R < 1$, where $R$ is a parameter characterizing the ratio of the nonlinearity to the linear dissipation, this algorithm has complexity $T^2mathrm{poly}(log T, log n, log 1/epsilon)/epsilon$, where $T$ is the evolution time and $epsilon$ is the allowed error in the output quantum state. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in $T$. We achieve this improvement using the method of Carleman linearization, for which we give a novel convergence theorem. This method maps a system of nonlinear differential equations to an infinite-dimensional system of linear differential equations, which we discretize, truncate, and solve using the forward Euler method and the quantum linear system algorithm. We also provide a lower bound on the worst-case complexity of quantum algorithms for general quadratic differential equations, showing that the problem is intractable for $R ge sqrt{2}$. Finally, we discuss potential applications of this approach to problems arising in biology as well as in fluid and plasma dynamics.
The wave-function Monte-Carlo method, also referred to as the use of quantum-jump trajectories, allows efficient simulation of open systems by independently tracking the evolution of many pure-state trajectories. This method is ideally suited to simu lation by modern, highly parallel computers. Here we show that Krotovs method of numerical optimal control, unlike others, can be modified in a simple way, so that it becomes fully parallel in the pure states without losing its effectiveness. This provides a highly efficient method for finding optimal control protocols for open quantum systems and networks. We apply this method to the problem of generating entangled states in a network consisting of systems coupled in a unidirectional chain. We show that due to the existence of a dark-state subspace in the network, nearly-optimal control protocols can be found for this problem by using only a single pure-state trajectory in the optimization, further increasing the efficiency.
In this paper a method is presented for evaluating the convolution of the Greens function for the Laplace operator with a specified function $rho(vec x)$ at all grid points in a rectangular domain $Omega subset {mathrm R}^{d}$ ($d = 1,2,3$), i.e. a s olution of Poissons equation in an infinite domain. 4th and 6th ord
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا