ﻻ يوجد ملخص باللغة العربية
We comment on the macroscopic model for surface plasmons of H.-Y. Deng [New J. Phys. 21 (2019) 043055; arXiv:1712.06101] and a claim, based on energy conversion from charges to the electric field, that surface plasmons on metallic surfaces may become unstable [J. Phys.: Cond. Matt. 29 (2017) 455002; arXiv:1606.06239, 1701.01060]. The discussion revolves around the formulation of charge conservation in the bulk and the surface of a metal. We elaborate in particular on the role of a finite electric current normal to the surface. Using a scheme of Cercignani and Lampis and of Zaremba, we point out that the model chosen by Deng for the non-specular scattering of electrons needs to be amended to prevent the disappearance of charges at the surface. Different models and approaches in the literature on surface plasmons are reviewed: the interfacial excess field approach of Bedeaux and Vlieger which contains Dengs macroscopic model, the assumption of specular reflection of Ritchie and Marusak, a hydrodynamic model with a composite charge density (partially localized at the surface), the local dielectric model, and a macroscopic method with (anti)symmetric fictitious stimuli (used, e.g., by Garc{i}a-Moliner and Flores). This puts Dengs results into perspective and illustrates problems with his approach.
We propose a scheme to directionally couple light into graphene plasmons by placing a graphene sheet on a magneto-optical substrate. When a magnetic field is applied parallel to the surface, the graphene plasmon dispersion relation becomes asymmetric
Assuming that the resonant surface plasmons on a spherical nanoparticle is formed by standing waves of two counter-propagating surface plasmon waves along the surface, by using Mie theory simulation, we find that the dispersions of surface plasmon re
We demonstrate that graphene placed on top of structured substrates offers a novel approach for trapping and guiding surface plasmons. A monolayer graphene with a spatially varying curvature exhibits an effective trapping potential for graphene plasm
Here we present an all-optical plasmon coupling scheme, utilising the intrinsic nonlinear optical response of graphene. We demonstrate coupling of free-space, visible light pulses to the surface plasmons in a planar, un-patterned graphene sheet by us
Recent experiments have shown that spatial dispersion may have a conspicuous impact on the response of plasmonic structures. This suggests that in some cases the Drude model should be replaced by more advanced descriptions that take spatial dispersio