ﻻ يوجد ملخص باللغة العربية
Structural degeneracies underpin the ferroic behavior of next-generation two-dimensional materials, and lead to peculiar two-dimensional structural transformations under external fields, charge doping and/or temperature. The most direct indicator of the ease of these transformations is an {em elastic energy barrier}, defined as the energy difference between the (degenerate) structural ground state unit cell, and a unit cell with an increased structural symmetry. Proximity of a two-dimensional material to a bulk substrate can affect the magnitude of the critical fields and/or temperature at which these transformations occur, with the first effect being a relative charge transfer, which could trigger a structural quantum phase transition. With this physical picture in mind, we report the effect of modest charge doping (within $-0.2$ and $+0.2$ electrons per unit cell) on the elastic energy barrier of ferroelastic black phosphorene and nine ferroelectric monochalcogenide monolayers. The elastic energy barrier $J_s$ is the energy needed to create a $Pnm2_1to P4/nmm$ two-dimensional structural transformation. Similar to the effect on the elastic energy barrier of ferroelastic SnO monolayers, group-IV monochalcogenide monolayers show a tunable elastic energy barrier for similar amounts of doping: a decrease (increase) of $J_s$ can be engineered under a modest hole (electron) doping of no more than one tenth of an electron or a hole per atom.
The family of group IV-VI monochalcogenides has an atomically puckered layered structure, and their atomic bond configuration suggests the possibility for the realization of various polymorphs. Here, we report the synthesis of the first hexagonal pol
The two-dimensional ferroelectrics GeS, GeSe, SnS and SnSe are expected to have large spontaneous in-plane electric polarization and enhanced shift-current response. Using density functional methods, we show that these materials also exhibit the larg
Using electrically detected magnetic resonance spectroscopy, we demonstrate that doping the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) with ethylene glycol allows for the control of effective local charge
We study the injection current response tensor (also known as circular photogalvanic effect or ballistic current) in ferrolectric monolayer GeS, GeSe, SnS, and SnSe. We find that the injection current is perpendicular to the spontaneous in-plane pola
We survey the state-of-the-art knowledge of ferroelectric and ferroelastic group-IV monochalcogenide monolayers. These semiconductors feature remarkable structural and mechanical properties, such as a switchable in-plane spontaneous polarization, sof