ترغب بنشر مسار تعليمي؟ اضغط هنا

Departure from Babinet principle in metasurfaces supported by subwavelength dielectric slabs

64   0   0.0 ( 0 )
 نشر من قبل Simone Zanotto
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Symmetry principles and theorems are of crucial importance in optics. Indeed, from one side they allow to get direct insights into phenomena by eliminating unphysical interpretations; from the other side, they guide the designer of photonic components by narrowing down the parameter space of design variables. In this Letter we illustrate a significant departure from the Babinet spectral complementarity in a very common and technologically relevant situation: that of a patterned conducting screen placed on a subwavelength dielectric slab. The symmetry property predicted by Babinet theorem is correctly recovered for pairs of geometrically complementary - but less realistic in terms of applications - free-standing patterned screens. Our analysis merges experimental data with fully vectorial electromagnetic modeling, and provides also an alternative form of Babinet theorem that highlights a connection with the concept of electromagnetic duality.

قيم البحث

اقرأ أيضاً

Metasurfaces are planar structures that locally modify the polarization, phase, and amplitude of light in reflection or transmission, thus enabling lithographically patterned flat optical components with functionalities controlled by design. Transmis sive metasurfaces are especially important, as most optical systems used in practice operate in transmission. Several types of transmissive metasurfaces have been realized, but with either low transmission efficiencies or limited control over polarization and phase. Here we show a metasurface platform based on high-contrast dielectric elliptical nano-posts which provides complete control of polarization and phase with sub-wavelength spatial resolution and experimentally measured efficiency ranging from 72% to 97%, depending on the exact design. Such complete control enables the realization of most free-space transmissive optical elements such as lenses, phase-plates, wave-plates, polarizers, beam-splitters, as well as polarization switchable phase holograms and arbitrary vector beam generators using the same metamaterial platform.
374 - Xiaoqing Luo , Fangrong Hu , 2021
We propose a Babinet-invertible chiral metasurface for achieving dynamically reversible and strong circular dichroism (CD). The proposed metasurface is composed of VO$_2$-metal hybrid structure, and when VO$_2$ transits between the dielectric state a nd the metallic state, the metasurface unit cell switches between complementary structures that are designed according to the Babinet principle. This leads to a large and reversible CD tuning range between $pm 0.5$ at 0.97~THz, which is larger than the literature. We attribute the CD effect to extrinsic chirality of the proposed metasurface. We envision that the Babinet-invertible chiral metasurface proposed here will advance the engineering of active and tunable chiro-optical devices and promote their applications.
For dielectric multilayered metamaterials, the effective-parameter representation is known to be insensitive to geometrical features occurring at deeply subwavelength scales. However, recent studies on periodic and aperiodically ordered geometries ha ve shown the existence of certain critical parameter regimes where this conventional wisdom is upended, as the optical response of finite-size samples may depart considerably from the predictions of standard effective-medium theory. In these regimes, characterized by a mixed evanescent/propagating light transport, different classes of spatial (dis)order have been shown to induce distinctive effects in the optical response, in terms of anomalous transmission, localization, enhancement, absorption and lasing. Here, we further expand these examples by considering a quasiperiodic scenario based on a modified-Fibonacci geometry. Among the intriguing features of this model there is the presence of a scale parameter that controls the transition from perfectly periodic to quasiperiodic scenarios of different shades. Via an extensive parametric study, this allows us to identify the quasiperiodicity-induced anomalous effects, and to elucidate certain distinctive mechanisms and footprints. Our results hold potentially interesting implications for the optical probing of structural features at a resolution much smaller than the wavelength, and could also be leveraged to design novel types of absorbers and low-threshold lasers.
Electromagnetic fields coupled with mechanical degrees of freedom have recently shown exceptional and innovative applications, ultimately leading to mesoscopic optomechanical devices operating in the quantum regime of motion. Simultaneously, micromec hanical elements have provided new ways to enhance and manipulate the optical properties of passive photonic elements. Following this concept, in this article we show how combining a chiral metasurface with a GaAs suspended micromembrane can offer new scenarios for controlling the polarization state of near-infrared light beams. Starting from the uncommon properties of chiral metasurface to statically realize target polarization states and circular and linear dichroism, we report mechanically induced, ~300 kHz polarization modulation, which favorably compares, in terms of speed, with liquid-crystals commercial devices. Moreover, we demonstrate how the mechanical resonance can be non-trivially affected by the input light polarization (and chiral state) via a thermoelastic effect triggered by intracavity photons. This work inaugurates the field of Polarization Optomechanics, which could pave the way to fast polarimetric devices, polarization modulators and dynamically tunable chiral state generators and detectors, as well as giving access to new form of polarization nonlinearities and control.
Metasurfaces with tunable spatial phase functions could benefit numerous applications. Currently, most approaches to tuning rely on mechanical stretching which cannot control phase locally, or by modulating the refractive index to exploit rapid phase changes with the drawback of also modulating amplitude. Here, we propose a method to realize phase modulation at subwavelength length scales while maintaining unity amplitude. Our device is inspired by an asymmetric Fabry-Perot resonator, with pixels comprising a scattering nanopost on top of a distributed Bragg reflector, capable of providing a nearly 2{pi} nonlinear phase shift with less than 2% refractive index modulation. Using the designed pixels, we simulate a tunable metasurface composed of an array of moderately coupled nanopost resonators, realizing axicons, vortex beam generators, and aspherical lenses with both variable focal length and in-plane scanning capability, achieving nearly diffraction-limited performance. The experimental feasibility of the proposed method is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا