ﻻ يوجد ملخص باللغة العربية
Within an advanced Langevin-hydrodynamics framework coupled to a hybrid fragmentation-coalescence hadronization model, we study heavy flavor quenching and flow in relativistic heavy-ion collisions. We investigate how the initial heavy quark spectrum, the energy loss and hadronization mechanisms of heavy quarks in medium, the evolution profile of pre-equilibrium stage, the flow of medium and the temperature dependence of heavy quark diffusion coefficient influence the suppression and elliptic flow of heavy mesons at RHIC and the LHC. Our result shows that different modeling of initial conditions, pre-equilibrium evolution and in-medium interaction can individually yield about 10-40% uncertainties in D meson suppression and flow at low transverse momentum. We also find that a proper combination of collisional versus radiative energy loss, coalescence versus fragmentation in hadronization, and the inclusion of medium flow are the most important factors for describing the suppression and elliptic flow of heavy mesons.
A current goal of relativistic heavy ion collisions experiments is the search for a Color Glass Condensate as the limiting state of QCD matter at very high density. In viscous hydrodynamics simulations, a standard Glauber initial condition leads to e
The Linear Boltzmann Transport (LBT) model coupled to hydrodynamical background is extended to include transport of both light partons and heavy quarks through the quark-gluon plasma (QGP) in high-energy heavy-ion collisions. The LBT model includes b
The determination of the color force in a quark-gluon plasma (QGP) is a key objective in the investigation of strong-interaction matter. Open and hidden heavy-flavor observables in heavy-ion collisions (HICs) are believed to provide insights into thi
In this work, we debut a new implementation of IP-Glasma and quantify the pre-equilibrium longitudinal flow in the IP-Glasma framework. The saturation physics based IP-Glasma model naturally provides a non-zero initial longitudinal flow through its p
In high energy collisions involving small nuclei (p+p or x+Au collisions where x=p, d, or $^3$He) the fluctuating size, shape and internal gluonic structure of the nucleon is shown to have a strong effect on the initial size and shape of the fireball