ﻻ يوجد ملخص باللغة العربية
We propose a mechanism to directly measure the chiral anomaly in disorder Weyl semimetals (WSMs) by the Kondo effect. We find that in a magnetic and electric field driven WSM, the locations of the Kondo peaks can be modulated by the chiral chemical potential, which is proportional to $mathbf{E}cdot mathbf{B}$. The Kondo peaks come from spin fluctuations within the impurities, which apart from the temperature, relate closely to the hosts Fermi level. In WSMs, the chiral-anomaly-induced chirality population imbalance will shift the local Fermi levels of the paired Weyl valleys toward opposite directions in energy, and then affects the Kondo effect. Consequently, the Kondo effect can be tunable by an external electric field via the chiral chemical potential. This is unique to the chiral anomaly. Base on this, we argue that the electrically tunable Kondo effect can serve as a direct measurement of the chiral anomaly in WSMs. The Kondo peaks are robust against the disorder effect and therefore, the signal of the chiral anomaly survives for a relatively weak magnetic field.
After the experimental realization, the Berry curvature dipole (BCD) induced nonlinear Hall effect (NLHE) has attracted tremendous interest to the condensed matter community. Here, we investigate another family of Hall effect, namely, chiral anomaly
Weyl semimetals are well-known for hosting topologically protected linear band crossings, serving as the analog of the relativistic Weyl Fermions in the condensed matter context. Such analogy persists deeply, allowing the existence of the chiral anom
We present a theory of magnetotransport phenomena related to the chiral anomaly in Weyl semimetals. We show that conductivity, thermal conductivity, thermoelectric and the sound absorption coefficients exhibit strong and anisotropic magnetic field de
Chiral anomaly or Adler-Bell-Jackiw anomaly in Weyl semimetals (WSMs) has a significant impact on the electron transport behaviors, leading to remarkable longitudinal or planar electrical and thermoelectric transport phenomena in the presence of elec
We describe a new type of the Chiral Magnetic Effect (CME) that should occur in Weyl semimetals with an asymmetry in the dispersion relations of the left- and right-handed chiral Weyl fermions. In such materials, time-dependent pumping of electrons f