ﻻ يوجد ملخص باللغة العربية
We investigated the evolution of ferromagnetism in layered Fe$_3$GeTe$_2$ flakes under different pressures and temperatures using in situ magnetic circular dichroism (MCD) spectroscopy. We found that the rectangle shape of hysteretic loop under an out-of-plane magnetic field sweep can sustain below 7 GPa. Above that pressure, an intermediate state appears at low temperature region signaled by an 8-shaped skew hysteretic loop. Meanwhile, the coercive field and Curie temperature decrease with increasing pressures, implying the decrease of the exchange interaction and the magneto-crystalline anisotropy under pressures. The intermediate phase has a labyrinthine domain structure, which is attributed to the increase of ratio of exchange interaction to magneto-crystalline anisotropy based on Jaglas theory. Moreover, our calculation results reveal a weak structural transition around 6 GPa, which leads to a drop of the magnetic momentum of Fe ions.
We systematically investigate the influence of high pressure on the electronic transport properties of layered ferromagnetic materials, in particular, those of Fe$_3$GeTe$_2$. Its crystal sustains a hexagonal phase under high pressures up to 25.9 GPa
Topological insulators (TIs) are bulk insulators with exotic topologically protected surface conducting modes. It has recently been pointed out that when stacked together, interactions between surface modes can induce diverse phases including the TI,
The anomalous Hall, Nernst and thermal Hall coefficients of Fe$_{3-x}$GeTe$_2$ display several features upon cooling, like a reversal in the Nernst signal below $T = 50$ K pointing to a topological transition (TT) associated to the development of mag
Using symmetry analysis and density functional theory calculations, we uncover the nature of Dzyaloshinskii-Moriya interaction in Fe$_3$GeTe$_2$ monolayer. We show that while such an interaction might result in small distortion of the magnetic textur
Material research has been a major driving force in the development of modern nano-electronic devices. In particular, research in magnetic thin films has revolutionized the development of spintronic devices; identifying new magnetic materials is key