ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure-dependent Intermediate Magnetic Phase in Thin Fe$_3$GeTe$_2$ Flakes

180   0   0.0 ( 0 )
 نشر من قبل Jun-Feng Dai
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the evolution of ferromagnetism in layered Fe$_3$GeTe$_2$ flakes under different pressures and temperatures using in situ magnetic circular dichroism (MCD) spectroscopy. We found that the rectangle shape of hysteretic loop under an out-of-plane magnetic field sweep can sustain below 7 GPa. Above that pressure, an intermediate state appears at low temperature region signaled by an 8-shaped skew hysteretic loop. Meanwhile, the coercive field and Curie temperature decrease with increasing pressures, implying the decrease of the exchange interaction and the magneto-crystalline anisotropy under pressures. The intermediate phase has a labyrinthine domain structure, which is attributed to the increase of ratio of exchange interaction to magneto-crystalline anisotropy based on Jaglas theory. Moreover, our calculation results reveal a weak structural transition around 6 GPa, which leads to a drop of the magnetic momentum of Fe ions.



قيم البحث

اقرأ أيضاً

122 - Xiangqi Wang , Zeyu Li , Min Zhang 2019
We systematically investigate the influence of high pressure on the electronic transport properties of layered ferromagnetic materials, in particular, those of Fe$_3$GeTe$_2$. Its crystal sustains a hexagonal phase under high pressures up to 25.9 GPa , while the Curie temperature decreases monotonously with the increasing pressure. By applying appropriate pressures, the experimentally measured anomalous Hall conductivity, $sigma_{xy}^A$, can be efficiently controlled. Our theoretical study reveals that this finding can be attributed to the shift of the spin--orbit-coupling-induced splitting bands of Fe atoms. With loading compression, $sigma_{xy}^A$ reaches its maximal value when the Fermi level lies inside the splitting bands and then attenuates when the splitting bands float above the Fermi level. Further compression leads to a prominent suppression of the magnetic moment, which is another physical cause of the decrease in $sigma_{xy}^A$ at high pressure. These results indicate that the application of pressure is an effective approach in controlling the anomalous Hall conductivity of layered magnetic materials, which elucidates the physical mechanism of the large intrinsic anomalous Hall effect.
Topological insulators (TIs) are bulk insulators with exotic topologically protected surface conducting modes. It has recently been pointed out that when stacked together, interactions between surface modes can induce diverse phases including the TI, Dirac semimetal, and Weyl semimetal. However, currently a full experimental understanding of the conditions under which topological modes interact is lacking. Here, working with multilayers of the TI Sb$_2$Te$_3$ and the band insulator GeTe, we provide experimental evidence of a multiple topological modes in a single Sb$_2$Te$_3$-GeTe-Sb$_2$Te$_3$ structure. Furthermore, we show that reducing the thickness of the GeTe layer induces a phase transition from a Dirac-like phase to a gapped phase. By comparing different multilayer structures we demonstrate that this transition occurs due to the hybridisation of states associated with different TI films. Our results demonstrate that the Sb$_2$Te$_3$-GeTe system offers strong potential towards manipulating topological states as well as towards controlledly inducing various topological phases.
The anomalous Hall, Nernst and thermal Hall coefficients of Fe$_{3-x}$GeTe$_2$ display several features upon cooling, like a reversal in the Nernst signal below $T = 50$ K pointing to a topological transition (TT) associated to the development of mag netic spin textures. Since the anomalous transport variables are related to the Berry curvature, a possible TT might imply deviations from the Wiedemann-Franz (WF) law. However, the anomalous Hall and thermal Hall coefficients of Fe$_{3-x}$GeTe$_2$ are found, within our experimental accuracy, to satisfy the WF law for magnetic-fields $mu_0H$ applied along its inter-layer direction. Surprisingly, large anomalous transport coefficients are also observed for $mu_0H$ applied along the planar emph{a}-axis as well as along the gradient of the chemical potential, a configuration that should not lead to their observation due to the absence of Lorentz force. However, as $mu_0H$ $|$ emph{a}-axis is increased, magnetization and neutron scattering indicate just the progressive canting of the magnetic moments towards the planes followed by their saturation. These anomalous planar quantities are found to not scale with the component of the planar magnetization ($M_{|}$), showing instead a sharp decrease beyond $sim mu_0 H_{|} = $ 4 T which is the field required to align the magnetic moments along $mu_0 H_{|}$. We argue that locally chiral spin structures, such as skyrmions, and possibly skyrmion tubes, lead to a field dependent spin-chirality and hence to a novel type of topological anomalous transport. Locally chiral spin-structures are captured by our Monte-Carlo simulations incorporating small Dzyaloshinskii-Moriya and biquadratic exchange interactions.
Using symmetry analysis and density functional theory calculations, we uncover the nature of Dzyaloshinskii-Moriya interaction in Fe$_3$GeTe$_2$ monolayer. We show that while such an interaction might result in small distortion of the magnetic textur e on the short range, on the longrange Dzyaloshinskii-Moriya interaction favors in-plane Neel spin-spirals along equivalent directions of the crystal structure. Whereas our results show that the observed Neel skyrmions cannot be explained by the Dzyaloshinskii-Moriya interaction at the monolayer level, they suggest that canted magnetic texture shall arise at the boundary of Fe$_3$GeTe$_2$ nanoflakes or nanoribbons and, most interestingly, that homochiral planar magnetic textures could be stabilized.
Material research has been a major driving force in the development of modern nano-electronic devices. In particular, research in magnetic thin films has revolutionized the development of spintronic devices; identifying new magnetic materials is key to better device performance and new device paradigm. The advent of two-dimensional van der Waals crystals creates new possibilities. This family of materials retain their chemical stability and structural integrity down to monolayers and, being atomically thin, are readily tuned by various kinds of gate modulation. Recent experiments have demonstrated that it is possible to obtain two-dimensional ferromagnetic order in insulating Cr$_2$Ge$_2$Te$_6$ and CrI$_3$ at low temperatures. Here, we developed a new device fabrication technique, and successfully isolated monolayers from layered metallic magnet Fe$_3$GeTe$_2$ for magnetotransport study. We found that the itinerant ferromagnetism persists in Fe$_3$GeTe$_2$ down to monolayer with an out-of-plane magnetocrystalline anisotropy. The ferromagnetic transition temperature, $T_c$, is suppressed in pristine Fe$_3$GeTe$_2$ thin flakes. An ionic gate, however, dramatically raises the $T_c$ up to room temperature, significantly higher than the bulk $T_c$ of 205 Kelvin. The gate-tunable room-temperature ferromagnetism in two-dimensional Fe$_3$GeTe$_2$ opens up opportunities for potential voltage-controlled magnetoelectronics based on atomically thin van der Waals crystals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا