ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating the Multi-Epoch Direct Detection Technique to Isolate the Thermal Emission of the Non-Transiting Hot Jupiter HD187123B

254   0   0.0 ( 0 )
 نشر من قبل Cam Buzard
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the 6.5$sigma$ detection of water from the hot Jupiter HD187123b with a Keplerian orbital velocity $K_p$ of 53 $pm$ 13 km/s. This high confidence detection is made using a multi-epoch, high resolution, cross correlation technique, and corresponds to a planetary mass of 1.4$^{+0.5}_{-0.3}$ $M_J$ and an orbital inclination of 21 $pm$ 5$^{circ}$. The technique works by treating the planet/star system as a spectroscopic binary and obtaining high signal-to-noise, high resolution observations at multiple points across the planets orbit to constrain the systems binary dynamical motion. All together, seven epochs of Keck/NIRSPEC $L$-band observations were obtained, with five before the instrument upgrade and two after. Using high resolution SCARLET planetary and PHOENIX stellar spectral models, along with a line-by-line telluric absorption model, we were able to drastically increase the confidence of the detection by running simulations that could reproduce, and thus remove, the non-random structured noise in the final likelihood space well. The ability to predict multi-epoch results will be extremely useful for furthering the technique. Here, we use these simulations to compare three different approaches to combining the cross correlations of high resolution spectra and find that the Zucker 2003 log(L) approach is least affected by unwanted planet/star correlation for our HD187123 data set. Furthermore, we find that the same total S/N spread across an orbit in many, lower S/N epochs rather than fewer, higher S/N epochs could provide a more efficient detection. This work provides a necessary validation of multi-epoch simulations which can be used to guide future observations and will be key to studying the atmospheres of further separated, non-transiting exoplanets.

قيم البحث

اقرأ أيضاً

We describe the detection of water vapor in the atmosphere of the transiting hot Jupiter KELT-2Ab by treating the star-planet system as a spectroscopic binary with high-resolution, ground-based spectroscopy. We resolve the signal of the planets motio n with deep combined flux observations of the star and the planet. In total, six epochs of Keck NIRSPEC $L$-band observations were obtained, and the full data set was subjected to a cross correlation analysis with a grid of self-consistent atmospheric models. We measure a radial projection of the Keplerian velocity, $K_P$, of 148 $pm$ 7 km s$^{-1}$, consistent with transit measurements, and detect water vapor at 3.8$sigma$. We combine NIRSPEC $L$-band data with $Spitzer$ IRAC secondary eclipse data to further probe the metallicity and carbon-to-oxygen ratio of KELT-2Abs atmosphere. While the NIRSPEC analysis provides few extra constraints on the $Spitzer$ data, it does provide roughly the same constraints on metallicity and carbon-to-oxygen ratio. This bodes well for future investigations of the atmospheres of non-transiting hot Jupiters.
The upsilon Andromedae system was the first multi-planet system discovered orbiting a main sequence star. We describe the detection of water vapor in the atmosphere of the innermost non-transiting gas giant ups~And~b by treating the star-planet syste m as a spectroscopic binary with high-resolution, ground-based spectroscopy. We resolve the signal of the planets motion and break the mass-inclination degeneracy for this non-transiting planet via deep combined flux observations of the star and the planet. In total, seven epochs of Keck NIRSPEC $L$ band observations, three epochs of Keck NIRSPEC short wavelength $K$ band observations, and three epochs of Keck NIRSPEC long wavelength $K$ band observations of the ups~And~system were obtained. We perform a multi-epoch cross correlation of the full data set with an atmospheric model. We measure the radial projection of the Keplerian velocity ($K_P$ = 55 $pm$ 9 km/s), true mass ($M_b$ = 1.7 $^{+0.33}_{-0.24}$ $M_J$), and orbital inclination big($i_b$ = 24 $pm$ 4$^{circ}$big), and determine that the planets opacity structure is dominated by water vapor at the probed wavelengths. Dynamical simulations of the planets in the ups~And~system with these orbital elements for ups~And~b show that stable, long-term (100 Myr) orbital configurations exist. These measurements will inform future studies of the stability and evolution of the ups~And~system, as well as the atmospheric structure and composition of the hot Jupiter.
WASP-80b is a warm Jupiter transiting a bright late-K/early-M dwarf, providing a good opportunity to extend the atmospheric study of hot Jupiters toward the lower temperature regime. We report multi-band, multi-epoch transit observations of WASP-80b by using three ground-based telescopes covering from optical (g, Rc, and Ic bands) to near-infrared (NIR; J, H, and Ks bands) wavelengths. We observe 5 primary transits, each of which in 3 or 4 different bands simultaneously, obtaining 17 independent transit light curves. Combining them with results from previous works, we find that the observed transmission spectrum is largely consistent with both a solar abundance and thick cloud atmospheric models at 1.7$sigma$ discrepancy level. On the other hand, we find a marginal spectral rise in optical region compared to the NIR region at 2.9$sigma$ level, which possibly indicates the existence of haze in the atmosphere. We simulate theoretical transmission spectra for a solar abundance but hazy atmosphere, finding that a model with equilibrium temperature of 600 K can explain the observed data well, having a discrepancy level of 1.0$sigma$. We also search for transit timing variations, but find no timing excess larger than 50 s from a linear ephemeris. In addition, we conduct 43 day long photometric monitoring of the host star in the optical bands, finding no significant variation in the stellar brightness. Combined with the fact that no spot-crossing event is observed in the five transits, our results confirm previous findings that the host star appears quiet for spot activities, despite the indications of strong chromospheric activities.
We target the thermal emission spectrum of the non-transiting gas giant HD 88133 b with high-resolution near-infrared spectroscopy, by treating the planet and its host star as a spectroscopic binary. For sufficiently deep summed flux observations of the star and planet across multiple epochs, it is possible to resolve the signal of the hot gas giants atmosphere compared to the brighter stellar spectrum, at a level consistent with the aggregate shot noise of the full data set. To do this, we first perform a principal component analysis to remove the contribution of the Earths atmosphere to the observed spectra. Then, we use a cross-correlation analysis to tease out the spectra of the host star and HD 88133 b to determine its orbit and identify key sources of atmospheric opacity. In total, six epochs of Keck NIRSPEC L band observations and three epochs of Keck NIRSPEC K band observations of the HD 88133 system were obtained. Based on an analysis of the maximum likelihood curves calculated from the multi-epoch cross correlation of the full data set with two atmospheric models, we report the direct detection of the emission spectrum of the non-transiting exoplanet HD 88133 b and measure a radial projection of the Keplerian orbital velocity of 40 $pm$ 15 km/s, a true mass of 1.02$^{+0.61}_{-0.28}M_J$, a nearly face-on orbital inclination of 15${^{+6}_{-5}}^{circ}$, and an atmosphere opacity structure at high dispersion dominated by water vapor. This, combined with eleven years of radial velocity measurements of the system, provides the most up-to-date ephemeris for HD 88133.
Using the POLISH instrument, I am unable to reproduce the large-amplitude polarimetric observations of Berdyugina et al. (2008) to the >99.99% confidence level. I observe no significant polarimetric variability in the HD 189733 system, and the upper limit to variability from the exoplanet is Delta_P < 7.9 x 10^(-5) with 99% confidence in the 400 nm to 675 nm wavelength range. Berdyugina et al. (2008) report polarized, scattered light from the atmosphere of the HD 189733b hot Jupiter with an amplitude of two parts in 10^4. Such a large amplitude is over an order of magnitude larger than expected given a geometric albedo similar to other hot Jupiters. However, my non-detection of polarimetric variability phase-locked to the orbital period of the exoplanet, and the lack of any significant variability, shows that the polarimetric modulation reported by Berdyugina et al. (2008) cannot be due to the exoplanet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا