ترغب بنشر مسار تعليمي؟ اضغط هنا

TAG : Type Auxiliary Guiding for Code Comment Generation

67   0   0.0 ( 0 )
 نشر من قبل Zhihao Liang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing leading code comment generation approaches with the structure-to-sequence framework ignores the type information of the interpretation of the code, e.g., operator, string, etc. However, introducing the type information into the existing framework is non-trivial due to the hierarchical dependence among the type information. In order to address the issues above, we propose a Type Auxiliary Guiding encoder-decoder framework for the code comment generation task which considers the source code as an N-ary tree with type information associated with each node. Specifically, our framework is featured with a Type-associated Encoder and a Type-restricted Decoder which enables adaptive summarization of the source code. We further propose a hierarchical reinforcement learning method to resolve the training difficulties of our proposed framework. Extensive evaluations demonstrate the state-of-the-art performance of our framework with both the auto-evaluated metrics and case studies.



قيم البحث

اقرأ أيضاً

Given a small set of seed entities (e.g., ``USA, ``Russia), corpus-based set expansion is to induce an extensive set of entities which share the same semantic class (Country in this example) from a given corpus. Set expansion benefits a wide range of downstream applications in knowledge discovery, such as web search, taxonomy construction, and query suggestion. Existing corpus-based set expansion algorithms typically bootstrap the given seeds by incorporating lexical patterns and distributional similarity. However, due to no negative sets provided explicitly, these methods suffer from semantic drift caused by expanding the seed set freely without guidance. We propose a new framework, Set-CoExpan, that automatically generates auxiliary sets as negative sets that are closely related to the target set of users interest, and then performs multiple sets co-expansion that extracts discriminative features by comparing target set with auxiliary sets, to form multiple cohesive sets that are distinctive from one another, thus resolving the semantic drift issue. In this paper we demonstrate that by generating auxiliary sets, we can guide the expansion process of target set to avoid touching those ambiguous areas around the border with auxiliary sets, and we show that Set-CoExpan outperforms strong baseline methods significantly.
Deep neural networks (DNNs) have shown remarkable performance in a variety of domains such as computer vision, speech recognition, or natural language processing. Recently they also have been applied to various software engineering tasks, typically i nvolving processing source code. DNNs are well-known to be vulnerable to adversarial examples, i.e., fabricated inputs that could lead to various misbehaviors of the DNN model while being perceived as benign by humans. In this paper, we focus on the code comment generation task in software engineering and study the robustness issue of the DNNs when they are applied to this task. We propose ACCENT, an identifier substitution approach to craft adversarial code snippets, which are syntactically correct and functionality-preserving with respect to the original code snippet, but may mislead the DNNs to produce completely irrelevant code comments. In order to improve the robustness, ACCENT also incorporates a novel training method, which can be applied to existing code comment generation models. We conduct comprehensive experiments to evaluate our approach by attacking the mainstream encoder-decoder architectures on two large-scale publicly available datasets. The results show that ACCENT efficiently produces stable attacks with functionality-preserving adversarial examples, and the generated examples have better transferability compared with baselines. We also confirm, via experiments, the effectiveness in improving model robustness with our training method.
In this paper, we describe ALTER, an auxiliary text rewriting tool that facilitates the rewriting process for natural language generation tasks, such as paraphrasing, text simplification, fairness-aware text rewriting, and text style transfer. Our to ol is characterized by two features, i) recording of word-level revision histories and ii) flexible auxiliary edit support and feedback to annotators. The text rewriting assist and traceable rewriting history are potentially beneficial to the future research of natural language generation.
Comments are an integral part of software development; they are natural language descriptions associated with source code elements. Understanding explicit associations can be useful in improving code comprehensibility and maintaining the consistency between code and comments. As an initial step towards this larger goal, we address the task of associating entities in Javadoc comments with elements in Java source code. We propose an approach for automatically extracting supervised data using revision histories of open source projects and present a manually annotated evaluation dataset for this task. We develop a binary classifier and a sequence labeling model by crafting a rich feature set which encompasses various aspects of code, comments, and the relationships between them. Experiments show that our systems outperform several baselines learning from the proposed supervision.
In models to generate program source code from natural language, representing this code in a tree structure has been a common approach. However, existing methods often fail to generate complex code correctly due to a lack of ability to memorize large and complex structures. We introduce ReCode, a method based on subtree retrieval that makes it possible to explicitly reference existing code examples within a neural code generation model. First, we retrieve sentences that are similar to input sentences using a dynamic-programming-based sentence similarity scoring method. Next, we extract n-grams of action sequences that build the associated abstract syntax tree. Finally, we increase the probability of actions that cause the retrieved n-gram action subtree to be in the predicted code. We show that our approach improves the performance on two code generation tasks by up to +2.6 BLEU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا