ﻻ يوجد ملخص باللغة العربية
Among the available solutions for drone swarm simulations, we identified a gap in simulation frameworks that allow easy algorithms prototyping, tuning, debugging and performance analysis, and do not require the user to interface with multiple programming languages. We present SwarmLab, a software entirely written in Matlab, that aims at the creation of standardized processes and metrics to quantify the performance and robustness of swarm algorithms, and in particular, it focuses on drones. We showcase the functionalities of SwarmLab by comparing two state-of-the-art algorithms for the navigation of aerial swarms in cluttered environments, Olfati-Sabers and Vasarhelyis. We analyze the variability of the inter-agent distances and agents speeds during flight. We also study some of the performance metrics presented, i.e. order, inter and extra-agent safety, union, and connectivity. While Olfati-Sabers approach results in a faster crossing of the obstacle field, Vasarhelyis approach allows the agents to fly smoother trajectories, without oscillations. We believe that SwarmLab is relevant for both the biological and robotics research communities, and for education, since it allows fast algorithm development, the automatic collection of simulated data, the systematic analysis of swarming behaviors with performance metrics inherited from the state of the art.
The Kilobot is a widely used platform for investigation of swarm robotics. Physical Kilobots are slow moving and require frequent recalibration and charging, which significantly slows down the development cycle. Simulators can speed up the process of
Microrobotics has the potential to revolutionize many applications including targeted material delivery, assembly, and surgery. The same properties that promise breakthrough solutions---small size and large populations---present unique challenges for
The use of delivery services is an increasing trend worldwide, further enhanced by the COVID pandemic. In this context, drone delivery systems are of great interest as they may allow for faster and cheaper deliveries. This paper presents a navigation
The decentralized state estimation is one of the most fundamental components for autonomous aerial swarm systems in GPS-denied areas, which still remains a highly challenging research topic. To address this research niche, the Omni-swarm, a decentral
Autonomous drone racing is a challenging research problem at the intersection of computer vision, planning, state estimation, and control. We introduce AirSim Drone Racing Lab, a simulation framework for enabling fast prototyping of algorithms for au