ترغب بنشر مسار تعليمي؟ اضغط هنا

Cryogenic characterization of a LiAlO$_{2}$ crystal and new results on spin-dependent dark matter interactions with ordinary matter

68   0   0.0 ( 0 )
 نشر من قبل Elia Bertoldo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, a first cryogenic characterization of a scintillating LiAlO$_{2}$ single crystal is presented. The results achieved show that this material holds great potential as a target for direct dark matter search experiments. Three different detector modules obtained from one crystal grown at the Leibniz-Institut fur Kristallzuchtung (IKZ) have been tested to study different properties at cryogenic temperatures. Firstly, two 2.8 g twin crystals were used to build different detector modules which were operated in an above-ground laboratory at the Max Planck Institute for Physics (MPP) in Munich, Germany. The first detector module was used to study the scintillation properties of LiAlO$_{2}$ at cryogenic temperatures. The second achieved an energy threshold of (213.02$pm$1.48) eV which allows setting a competitive limit on the spin-dependent dark matter particle-proton scattering cross section for dark matter particle masses between 350 MeV/c$^{2}$ and 1.50 GeV/c$^{2}$. Secondly, a detector module with a 373 g LiAlO$_{2}$ crystal as the main absorber was tested in an underground facility at the Laboratori Nazionali del Gran Sasso (LNGS): from this measurement it was possible to determine the radiopurity of the crystal and study the feasibility of using this material as a neutron flux monitor for low-background experiments.

قيم البحث

اقرأ أيضاً

Dark matter interactions with electrons or protons during the early Universe leave imprints on the cosmic microwave background and the matter power spectrum, and can be probed through cosmological and astrophysical observations. We explore these inte ractions using a diverse suite of data: cosmic microwave background anisotropies, baryon acoustic oscillations, the Lyman-$alpha$ forest, and the abundance of Milky-Way subhalos. We derive constraints using model-independent parameterizations of the dark matter--electron and dark matter--proton interaction cross sections and map these constraints onto concrete dark matter models. Our constraints are complementary to other probes of dark matter interactions with ordinary matter, such as direct detection, big bang nucleosynthesis, various astrophysical systems, and accelerator-based experiments.
We use observations of gas-rich dwarf galaxies to derive constraints on dark matter scattering with ordinary matter. We require that heating/cooling due to DM interacting with gas in the Leo T dwarf galaxy not exceed the ultra-low radiative cooling r ate of the gas. This enables us to set $(i)$ stronger bounds than all the previous literature on ultra-light hidden photon DM for nearly all of the mass range $10^{-23}lesssim m_mathrm{DM} lesssim 10^{-10}$ eV, $(ii)$ limits on sub-GeV millicharged DM which add to the constraints on the recent EDGES 21cm absorption anomaly, and $(iii)$ constraints on DM-baryon interactions directly at low relative velocities $v_mathrm{rel}sim 17$ km/s. Our study opens a new direction at using observations of gas-rich dwarf galaxies from previous, current and upcoming optical and 21cm surveys to probe physics beyond the standard model.
The Aria project consists of a plant, hosting a 350 m cryogenic isotopic distillation column, the tallest ever built, which is currently in the installation phase in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pil lars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. Aria was designed to reduce the isotopic abundance of $^{39}$Ar, a $beta$-emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors, in the argon used for the dark-matter searches, the so-called Underground Argon (UAr). In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of isotopic cryogenic distillation of nitrogen with a prototype plant, operating the column at total reflux.
In this work, we want to highlight the potential of lithium as a target for spin-dependent dark matter search in cryogenic experiments, with a special focus on the low-mass region of the parameter space. We operated a prototype detector module based on a Li$_2$MoO$_4$ target crystal in an above-ground laboratory. Despite the high background environment, the detector sets competitive limits on spin-dependent interactions of dark matter particles with protons and neutrons for masses between 0.8 GeV/c$^2$ and 1.5 GeV/c$^2$.
We present the measured baseline ionization resolution of a HEMT-based cryogenic charge amplifier coupled to a CDMS-II detector. The amplifier has been developed to allow massive semiconductor dark matter detectors to retain background discrimination at the low recoil energies produced by low-mass WIMPs. We find a calibrated baseline ionization resolution of $sigma_E = 91,text{eV}_{ee}$. To our knowledge, this is the best direct ionization resolution achieved with such massive ($approx$150 pF capacitance) radiation detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا