ترغب بنشر مسار تعليمي؟ اضغط هنا

Consistent identification of continuous-time systems under multisine input signal excitation

127   0   0.0 ( 0 )
 نشر من قبل Rodrigo A. Gonz\\'alez
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

For many years, the Simplified Refined Instrumental Variable method for Continuous-time systems (SRIVC) has been widely used for identification. The intersample behaviour of the input plays an important role in this method, and it has been shown recently that the SRIVC estimator is not consistent if an incorrect assumption on the intersample behaviour is considered. In this paper, we present an extension of the SRIVC algorithm that is able to deal with continuous-time multisine signals, which cannot be interpolated exactly through hold reconstructions. The proposed estimator is generically consistent for any input reconstructed through zero or first-order-hold devices, and we show that it is generically consistent for continuous-time multisine inputs as well. The statistical performance of the proposed estimator is compared to the standard SRIVC estimator through extensive simulations.



قيم البحث

اقرأ أيضاً

In continuous-time system identification, the intersample behavior of the input signal is known to play a crucial role in the performance of estimation methods. One common input behavior assumption is that the spectrum of the input is band-limited. T he sinc interpolation property of these input signals yields equivalent discrete-time representations that are non-causal. This observation, often overlooked in the literature, is exploited in this work to study non-parametric frequency response estimators of linear continuous-time systems. We study the properties of non-causal least-square estimators for continuous-time system identification, and propose a kernel-based non-causal regularized least-squares approach for estimating the band-limited equivalent impulse response. The proposed methods are tested via extensive numerical simulations.
In this paper, we introduce the notion of periodic safety, which requires that the system trajectories periodically visit a subset of a forward-invariant safe set, and utilize it in a multi-rate framework where a high-level planner generates a refere nce trajectory that is tracked by a low-level controller under input constraints. We introduce the notion of fixed-time barrier functions which is leveraged by the proposed low-level controller in a quadratic programming framework. Then, we design a model predictive control policy for high-level planning with a bound on the rate of change for the reference trajectory to guarantee that periodic safety is achieved. We demonstrate the effectiveness of the proposed strategy on a simulation example, where the proposed fixed-time stabilizing low-level controller shows successful satisfaction of control objectives, whereas an exponentially stabilizing low-level controller fails.
In this paper, we first propose a method that can efficiently compute the maximal robust controlled invariant set for discrete-time linear systems with pure delay in input. The key to this method is to construct an auxiliary linear system (without de lay) with the same state-space dimension of the original system in consideration and to relate the maximal invariant set of the auxiliary system to that of the original system. When the system is subject to disturbances, guaranteeing safety is harder for systems with input delays. Ability to incorporate any additional information about the disturbance becomes more critical in these cases. Motivated by this observation, in the second part of the paper, we generalize the proposed method to take into account additional preview information on the disturbances, while maintaining computational efficiency. Compared with the naive approach of constructing a higher dimensional system by appending the state-space with the delayed inputs and previewed disturbances, the proposed approach is demonstrated to scale much better with the increasing delay time.
Discrete abstractions have become a standard approach to assist control synthesis under complex specifications. Most techniques for the construction of discrete abstractions are based on sampling of both the state and time spaces, which may not be ab le to guarantee safety for continuous-time systems. In this work, we aim at addressing this problem by considering only state-space abstraction. Firstly, we connect the continuous-time concrete system with its discrete (state-space) abstraction with a control interface. Then, a novel stability notion called controlled globally asymptotic/practical stability with respect to a set is proposed. It is shown that every system, under the condition that there exists an admissible control interface such that the augmented system (composed of the concrete system and its abstraction) can be made controlled globally practically stable with respect to the given set, is approximately simulated by its discrete abstraction. The effectiveness of the proposed results is illustrated by a simulation example.
We study the problem of controlling multi-agent systems under a set of signal temporal logic tasks. Signal temporal logic is a formalism that is used to express time and space constraints for dynamical systems. Recent methods to solve the control syn thesis problem for single-agent systems under signal temporal logic tasks are, however, subject to a high computational complexity. Methods for multi-agent systems scale at least linearly with the number of agents and induce even higher computational burdens. We propose a computationally-efficient control strategy to solve the multi-agent control synthesis problem that results in a robust satisfaction of a set of signal temporal logic tasks. In particular, a decentralized feedback control law is proposed that is based on time-varying control barrier functions. The obtained control law is discontinuous and formal guarantees are provided by nonsmooth analysis. Simulations show the efficacy of the presented method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا