ترغب بنشر مسار تعليمي؟ اضغط هنا

Similarity and delay between two non-narrow-band time signals

83   0   0.0 ( 0 )
 نشر من قبل Lin-Tao Liu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Correlation coefficient is usually used to measure the correlation degree between two time signals. However, its performance will drop or even fail if the signals are noised. Based on the time-frequency phase spectrum (TFPS) provided by normal time-frequency transform (NTFT), similarity coefficient is proposed to measure the similarity between two non-narrow-band time signals, even if the signals are noised. The basic idea of the similarity coefficient is to translate the interest part of signal f1(t)s TFPS along the time axis to couple with signal f2(t)s TFPS. Such coupling would generate a maximum if f1(t)and f2(t) are really similar to each other in time-frequency structure. The maximum, if normalized, is called similarity coefficient. The location of the maximum indicates the time delay between f1(t) and f2(t). Numerical results show that the similarity coefficient is better than the correlation coefficient in measuring the correlation degree between two noised signals. Precision and accuracy of the time delay estimation (TDE) based on the similarity analysis are much better than those based on cross-correlation (CC) method and generalized CC (GCC) method under low SNR.



قيم البحث

اقرأ أيضاً

Reconstructing a band-limited function from its finite sample data is a fundamental task in signal analysis. A simple Gaussian or hyper-Gaussian regularized Shannon sampling series has been proved to be able to achieve exponential convergence for uni form sampling. In this paper, we prove that exponential approximation can also be attained for general nonuniform sampling. The analysis is based on the the residue theorem to represent the truncated error by a contour integral. Several concrete examples of nonuniform sampling with exponential convergence will be presented.
The multipath radio channel is considered to have a non-bandlimited channel impulse response. Therefore, it is challenging to achieve high resolution time-delay (TD) estimation of multipath components (MPCs) from bandlimited observations of communica tion signals. It this paper, we consider the problem of multiband channel sampling and TD estimation of MPCs. We assume that the nonideal multibranch receiver is used for multiband sampling, where the noise is nonuniform across the receiver branches. The resulting data model of Hankel matrices formed from acquired samples has multiple shift-invariance structures, and we propose an algorithm for TD estimation using weighted subspace fitting. The subspace fitting is formulated as a separable nonlinear least squares (NLS) problem, and it is solved using a variable projection method. The proposed algorithm supports high resolution TD estimation from an arbitrary number of bands, and it allows for nonuniform noise across the bands. Numerical simulations show that the algorithm almost attains the Cramer Rao Lower Bound, and it outperforms previously proposed methods such as multiresolution TOA, MI-MUSIC, and ESPRIT.
Photoacoustic imaging (PAI) is an emerging medical imaging modality capable of providing high spatial resolution of Ultrasound (US) imaging and high contrast of optical imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in PAI. How ever, using DAS beamformer leads to low resolution images and considerable contribution of off-axis signals. A new paradigm namely Delay-Multiply-and-Sum (DMAS), which was originally used as a reconstruction algorithm in confocal microwave imaging, was introduced to overcome the challenges in DAS. DMAS was used in PAI systems and it was shown that this algorithm results in resolution improvement and sidelobe degrading. However, DMAS is still sensitive to high levels of noise, and resolution improvement is not satisfying. Here, we propose a novel algorithm based on DAS algebra inside DMAS formula expansion, Double Stage DMAS (DS-DMAS), which improves the image resolution and levels of sidelobe, and is much less sensitive to high level of noise compared to DMAS. The performance of DS-DMAS algorithm is evaluated numerically and experimentally. The resulted images are evaluated qualitatively and quantitatively using established quality metrics including signal-to-noise ratio (SNR), full-width-half-maximum (FWHM) and contrast ratio (CR). It is shown that DS-DMAS outperforms DAS and DMAS at the expense of higher computational load. DS-DMAS reduces the lateral valley for about 15 dB and improves the SNR and FWHM better than 13% and 30%, respectively. Moreover, the levels of sidelobe are reduced for about 10 dB in comparison with those in DMAS.
Photoacoustic imaging (PAI) is an emerging biomedical imaging modality capable of providing both high contrast and high resolution of optical and UltraSound (US) imaging. When a short duration laser pulse illuminates the tissue as a target of imaging , tissue induces US waves and detected waves can be used to reconstruct optical absorption distribution. Since receiving part of PA consists of US waves, a large number of beamforming algorithms in US imaging can be applied on PA imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in US imaging. However, make use of DAS beamformer leads to low resolution images and large scale of off-axis signals contribution. To address these problems a new paradigm namely Delay-Multiply-and-Sum (DMAS), which was used as a reconstruction algorithm in confocal microwave imaging for breast cancer detection, was introduced for US imaging. Consequently, DMAS was used in PA imaging systems and it was shown this algorithm results in resolution enhancement and sidelobe degrading. However, in presence of high level of noise the reconstructed image still suffers from high contribution of noise. In this paper, a modified version of DMAS beamforming algorithm is proposed based on DAS inside DMAS formula expansion. The quantitative and qualitative results show that proposed method results in more noise reduction and resolution enhancement in expense of contrast degrading. For the simulation, two-point target, along with lateral variation in two depths of imaging are employed and it is evaluated under high level of noise in imaging medium. Proposed algorithm in compare to DMAS, results in reduction of lateral valley for about 19 dB followed by more distinguished two-point target. Moreover, levels of sidelobe are reduced for about 25 dB.
Multi-access edge computing (MEC) can enhance the computing capability of mobile devices, while non-orthogonal multiple access (NOMA) can provide high data rates. Combining these two strategies can effectively benefit the network with spectrum and en ergy efficiency. In this paper, we investigate the task delay minimization in multi-user NOMA-MEC networks, where multiple users can offload their tasks simultaneously through the same frequency band. We adopt the partial offloading policy, in which each user can partition its computation task into offloading and locally computing parts. We aim to minimize the task delay among users by optimizing their tasks partition ratios and offloading transmit power. The delay minimization problem is first formulated, and it is shown that it is a nonconvex one. By carefully investigating its structure, we transform the original problem into an equivalent quasi-convex. In this way, a bisection search iterative algorithm is proposed in order to achieve the minimum task delay. To reduce the complexity of the proposed algorithm and evaluate its optimality, we further derive closed-form expressions for the optimal task partition ratio and offloading power for the case of two-user NOMA-MEC networks. Simulations demonstrate the convergence and optimality of the proposed algorithm and the effectiveness of the closed-form analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا