ترغب بنشر مسار تعليمي؟ اضغط هنا

A Blast from the Pasture: Studying the environment of AT 2018cow with MUSE

106   0   0.0 ( 0 )
 نشر من قبل Joe Lyman
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

AT 2018cow was the nearest and best studied example of a new breed of extra-galactic, luminous and rapidly-evolving transient. Both the progenitor systems and explosion mechanisms of these rapid transients remain a mystery - the energetics, spectral signatures, and timescales make them challenging to interpret in established classes of supernovae and tidal disruption events. The rich, multi-wavelength data-set of AT 2018cow has still left several interpretations viable to explain the nature of this event. In this paper we analyse integral-field spectroscopic data of the host galaxy, CGCG 137-068, to compare environmental constraints with leading progenitor models. We find the explosion site of AT 2018cow to be very typical of core-collapse supernovae (known to form from stars with MZAMS ~8-25M), and infer a young stellar population age at the explosion site of few times 10Myr, at slightly sub-solar metallicity. When comparing to expectations for exotic intermediate-mass black hole (IMBH) tidal disruption events,we find no evidence for a potential host system of the IMBH. In particular, there are no abrupt changes in metallicity or kinematics in the vicinity of the explosion site, arguing against the presence of a distinct host system. The proximity of AT 2018cow to strong star-formation in the host galaxy makes us favour a massive stellar progenitor for this event.

قيم البحث

اقرأ أيضاً

221 - Russell J. Smith 2020
I report the discovery of a transient broad-H$alpha$ point source in the outskirts of the giant elliptical galaxy NGC 1404, discovered in archival observations taken with the MUSE integral field spectrograph. The H$alpha$ line width of 1950 km s$^{-1 }$ FWHM, and luminosity of (4.1$pm$0.1)$times$10$^{36}$ erg s$^{-1}$, are consistent with a nova outburst, and the source is not visible in MUSE data obtained nine months later. A transient soft X-ray source was detected at the same position (within $<$1 arcsec), 14 years before the H$alpha$ transient. If the X-ray and H$alpha$ emission are from the same object, the source may be a short-timescale recurrent nova with a massive white dwarf accretor, and hence a possible Type-Ia supernova progenitor. Selecting broad-H$alpha$ point sources in MUSE archival observations for a set of nearby early-type galaxies, I discovered twelve more nova candidates with similar properties to the NGC 1404 source, including five in NGC 1380 and four in NGC 4365. Multi-epoch data are available for four of these twelve sources; all four are confirmed to be transient on $sim$1 year timescales, supporting their identification as novae.
We present an analysis of the host-galaxy environment of Swope Supernova Survey 2017a (SSS17a), the discovery of an electromagnetic counterpart to a gravitational wave source, GW170817. SSS17a occurred 1.9 kpc (in projection; 10.2) from the nucleus o f NGC 4993, an S0 galaxy at a distance of 40 Mpc. We present a Hubble Space Telescope (HST) pre-trigger image of NGC 4993, Magellan optical spectroscopy of the nucleus of NGC 4993 and the location of SSS17a, and broad-band UV through IR photometry of NGC 4993. The spectrum and broad-band spectral-energy distribution indicate that NGC 4993 has a stellar mass of log (M/M_solar) = 10.49^{+0.08}_{-0.20} and star formation rate of 0.003 M_solar/yr, and the progenitor system of SSS17a likely had an age of >2.8 Gyr. There is no counterpart at the position of SSS17a in the HST pre-trigger image, indicating that the progenitor system had an absolute magnitude M_V > -5.8 mag. We detect dust lanes extending out to almost the position of SSS17a and >100 likely globular clusters associated with NGC 4993. The offset of SSS17a is similar to many short gamma-ray burst offsets, and its progenitor system was likely bound to NGC 4993. The environment of SSS17a is consistent with an old progenitor system such as a binary neutron star system.
High redshift quasars can be used to trace the early growth of massive galaxies and may be triggered by galaxy-galaxy interactions. We present MUSE science verification data on one such interacting system consisting of the well-studied z=3.2 PKS1614+ 051 quasar, its AGN companion galaxy and bridge of material radiating in Lyalpha between the quasar and its companion. We find a total of four companion galaxies (at least two galaxies are new discoveries), three of which reside within the likely virial radius of the quasar host, suggesting that the system will evolve into a massive elliptical galaxy by the present day. The MUSE data are of sufficient quality to split the extended Lyalpha emission line into narrow velocity channels. In these the gas can be seen extending towards each of the three neighbouring galaxies suggesting that the emission-line gas originates in a gravitational interaction between the galaxies and the quasar host. The photoionization source of this gas is less clear but is probably dominated by the two AGN. The quasars Lyalpha emission spectrum is double-peaked, likely due to absorbing neutral material at the quasars systemic redshift with a low column density as no damping wings are present. The spectral profiles of the AGN and bridges Lyalpha emission are also consistent with absorption at the same redshift indicating this neutral material may extend over > 50 kpc. The fact that the neutral material is seen in the line of sight to the quasar and transverse to it, and the fact that we see the quasar and it also illuminates the emission-line bridge, suggests the quasar radiates isotropically and any obscuring torus is small. These results demonstrate the power of MUSE for investigating the dynamics of interacting systems at high redshift.
We present a statistical analysis of the environments of 11 supernovae (SNe) which occurred in 6 nearby galaxies (z $lesssim$ 0.016). All galaxies were observed with MUSE, the high spatial resolution integral field spectrograph mounted to the 8m VLT UT4. These data enable us to map the full spatial extent of host galaxies up to $sim$3 effective radii. In this way, not only can one characterise the specific host environment of each SN, one can compare their properties with stellar populations within the full range of other environments within the host. We present a method that consists of selecting all HII regions found within host galaxies from 2D extinction-corrected H$alpha$ emission maps. These regions are then characterised in terms of their H$alpha$ equivalent widths, star formation rates, and oxygen abundances. Identifying HII regions spatially coincident with SN explosion sites, we are thus able to determine where within the distributions of host galaxy e.g. metallicities and ages each SN is found, thus providing new constraints on SN progenitor properties. This initial pilot study using MUSE opens the way for a revolution in SN environment studies where we are now able to study multiple environment SN progenitor dependencies using a single instrument and single pointing.
Supernova (SN) 2018cow (or AT2018cow) is an optical transient detected in the galaxy CGCG 137-068. It has been classified as a SN due to various characteristics in its optical spectra. The transient is also a bright X-ray source. We present results o f the analysis of ~62ks of X-ray observations taken with the Neil Gehrels Swift Observatory over 27 days. We found a variable behavior in the 0.3-10 keV X-ray light curve of SN 2018cow, with variability timescales of days. The observed X-ray variability could be due to the interaction between the SN ejecta and a non-uniform circumstellar medium, perhaps related to previous mass ejections from a luminous-blue-variable-like progenitor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا