ﻻ يوجد ملخص باللغة العربية
The addition of $SU(2)_L$ triplet fermions of zero hypercharge with the Standard Model (SM) helps to explain the origin of the neutrino mass by the so-called seesaw mechanism. Such a scenario is commonly know as the type-III seesaw model. After the electroweak symmetry breaking the mixings between the light and heavy mass eigenstates of the neutral leptons are developed which play important roles in the study of the charged and neutral multiplets of the triplet fermions at the colliders. In this article we study such interactions to produce these multiplets of the triplet fermion at the electron-positron and electron-proton colliders at different center of mass energies. We focus on the heavy triplets, for example, having mass in the TeV scale so that their decay products including the SM the gauge bosons or Higgs boson can be sufficiently boosted, leading to a fat jet. Hence we probe the mixing between light-heavy mass eigenstates of the neutrinos and compare the results with the bounds obtained by the electroweak precision study.
The review of using of compton backscattering method for determination of the beam energy in collider experiments is given.
We present the framework for obtaining precise predictions for the transverse momentum of hadrons with respect to the thrust axis in $e^+e^-$ collisions. This will enable a precise extraction of transverse momentum dependent (TMD) fragmentation funct
An electron-positron linear collider in the energy range between 500 and 1000 GeV is of crucial importance to precisely test the Standard Model and to explore the physics beyond it. The physics program is complementary to that of the Large Hadron Col
Precision studies at electron-positron colliders with center-of-mass energies in the charm-tau region and below have strongly contributed to our understanding of light-meson interactions at low energies. We focus on the processes involving two or thr
There is a recent proposal of identifying the Higgs particle of the Standard Model as a pseudo Nambu-Goldstone boson. This new broken symmetry introduces new particles and new interactions. Among these new interactions a central role to get a new phy