ترغب بنشر مسار تعليمي؟ اضغط هنا

On the changes in the physical properties of the ionized region around the Weigelt structures in Eta Carinae over the 5.54-yr spectroscopic cycle

81   0   0.0 ( 0 )
 نشر من قبل Theodore Gull
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present HST/STIS observations and analysis of two prominent nebular structures around the central source of Eta Carinae, the knots C and D. The former is brighter than the latter for emission lines from intermediate or high ionization potential ions. The brightness of lines from intermediate and high ionization potential ions significantly decreases at phases around periastron. We do not see conspicuous changes in the brightness of lines from low ionization potential (<13.6 eV) that the total extinction towards the Weigelt structures is that the total extinction towards the Weigelt structures is AsubV =2/0. that the total extinction towards the Weigelt structures is AV = 2.0. Weigelt C and D are characterized by an electron density of that the total extinction towards the Weigelt structures is AV = 2.0. Weigelt C and D are characterized by an electron density of 10exp6.9 cm-3 that does not significantly change throughout the orbital cycle. The electron temperature varies from 5500 K (around periastron) to 7200 K (around apastron). The relative changes in the brightness of He I lines are well reproduced by the variations in the electron temperature alone. We found that, at phases around periastron, the electron temperature seems to be higher for Weigelt C than that of D. The Weigelt structures are located close to the Homunculus equatorial plane, at a distance of about 1240 AU from the central source. From the analysis of proper motion and age, the Weigelt complex can be associated with the equatorial structure called the Butterfly Nebula surrounding the central binary system.


قيم البحث

اقرأ أيضاً

61 - Jose H. Groh 2009
We present a detailed spectroscopic analysis of the luminous blue variable AG Carinae during the last two visual minimum phases of its S-Dor cycle (1985-1990 and 2000-2003). The analysis reveals an overabundance of He, N, and Na, and a depletion of H , C, and O, on the surface of AG Car, indicating the presence of CNO-processed material. Furthermore, the ratio N/O is higher on the stellar surface than in the nebula. We found that the minimum phases of AG Car are not equal to each other, since we derived a noticeable difference between the maximum effective temperature achieved during 1985-1990 (22,800 K) and 2000-2001 (17,000 K). While the wind terminal velocity was 300 km/s in 1985-1990, it was as low as 105 km/s in 2001. The mass-loss rate, however, was lower from 1985-1990 (1.5 x 10^(-5) Msun/yr) than from 2000-2001 (3.7 x 10^(-5) Msun/yr). We found that the wind of AG Car is significantly clumped (f=0.10 - 0.25) and that clumps must be formed deep in the wind. We derived a bolometric luminosity of 1.5 x 10^6 Lsun during both minimum phases which, contrary to the common assumption, decreases to 1.0 x 10^6 Lsun as the star moves towards maximum flux in the V band. Assuming that the decrease in the bolometric luminosity of AG Car is due to the energy used to expand the outer layers of the star (Lamers 1995), we found that the expanding layers contain roughly 0.6 - 2 Msun. Such an amount of mass is an order of magnitude lower than the nebular mass around AG Car, but is comparable to the nebular mass found around lower-luminosity LBVs and to that of the Little Homunculus of Eta Car. If such a large amount of mass is indeed involved in the S Dor-type variability, we speculate that such instability could be a failed Giant Eruption, with several solar masses never becoming unbound from the star.(abridged)
Eta Carinae is a massive interacting binary system shrouded in a complex circumstellar environment whose evolution is the source of the long-term brightening observed during the last 80 years. An occulter, acting as a natural coronagraph, impacts obs ervations from our perspective, but not from most other directions. Other sight-lines are visible to us through studies of the Homunculus reflection nebula. The coronagraph appears to be vanishing, decreasing the extinction towards the central star, and causing the stars secular brightening. In contrast, the Homunculus remains at an almost constant brightness. The coronagraph primarily suppresses the stellar continuum, to a lesser extent the wind lines, and not the circumstellar emission lines. This explains why the absolute values of equivalent widths (EWs) of the emission lines in our direct view are larger than those seen in reflected by the Homunculus, why the direct view absolute EWs are decreasing with time, and why lower-excitation spectral wind lines formed at larger radii (e.g. FeII 4585A) decrease in intensity at a faster pace than higher excitation lines that form closer to the star (e.g. Hdelta). Our main result is that the star, despite its 10-fold brightening over two decades, is relatively stable. A vanishing coronagraph that can explain both the large flux evolution and the much weaker spectral evolution. This is contrary to suggestions that the long-term variability is intrinsic to the primary star that is still recovering from the Great Eruption with a decreasing mass-loss rate and a polar wind that is evolving at a slower pace than at the equator.
We report on H-alpha spectroscopy of the 2009.0 spectroscopic event of eta Carinae collected via SMARTS observations using the CTIO 1.5 m telescope and echelle spectrograph. Our observations were made almost every night over a two month interval arou nd the predicted minimum of eta Car. We observed a significant fading of the line emission that reached a minimum seven days after the X-ray minimum. About 17 d prior to the H-alpha flux minimum, the H-alpha profile exhibited the emergence of a broad, P Cygni type, absorption component (near a Doppler shift of -500 km/s) and a narrow absorption component (near -144 km/s and probably associated with intervening gas from the Little Homunculus Nebula). All these features were observed during the last event in 2003.5 and are probably related to the close periastron passage of the companion. We argue that these variations are consistent with qualitative expectations about changes in the primary stars stellar wind that result from the wind-wind collision with a massive binary companion and from atmospheric eclipses of the companion.
Eta Carinae is one of the most extreme cases of a Luminous Blue Variable star. A bipolar nebula of 17 size surrounds the central object. Even further out, a large amount of filamentary material extends to a distance of 30 or about 0.3 pc. In this pap er we present a detailed kinematic and morphological analysis of some outer filaments in this nebula which we call strings. All strings are extremly long and narrow structures. We identified 5 strings which have sizes of 0.058 to 0.177 pc in length and a width of only 0.002 pc. Using high-resolution long-slit echelle spectroscopy it was found that the strings follow a Hubble law with velocities increasing towards larger distances from the star. With these unique properties, high collimation and linear increase of the radial velocity the strings represent a newly found phenomena in the structure and evolution of nebulae around LBVs. Finally, we show that morphologically similar strings can be found in the planetary nebula NGC 6543, a possible PN-counterpart to this phenomenon.
We present an analysis of the visible through near infrared spectrum of Eta Carinae and its ejecta obtained during the Eta Carinae Campaign with the UVES at the ESO VLT. This is a part of larger effort to present a complete Eta Carinae spectrum, and extends the previously presented analyses with the HST/STIS in the UV (1240-3159 A) to 10,430 A. The spectrum in the mid and near UV is characterized by the ejecta absorption. At longer wavelengths, stellar wind features from the central source and narrow emission lines from the Weigelt condensations dominate the spectrum. However, narrow absorption lines from the circumstellar shells are present. This paper provides a description of the spectrum between 3060 and 10,430 A, including line identifications of the ejecta absorption spectrum, the emission spectrum from the Weigelt condensations and the P-Cygni stellar wind features. The high spectral resolving power of VLT/UVES enables equivalent width measurements of atomic and molecular absorption lines for elements with no transitions at the shorter wavelengths. However, the ground based seeing and contributions of nebular scattered radiation prevent direct comparison of measured equivalent widths in the VLT/UVES and HST/STIS spectra. Fortunately, HST/STIS and VLT/UVES have a small overlap in wavelength coverage which allows us to compare and adjust for the difference in scattered radiation entering the instruments apertures. This paper provides a complete online VLT/UVES spectrum with line identifications and a spectral comparison between HST/STIS and VLT/UVES between 3060 and 3160 A.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا