ﻻ يوجد ملخص باللغة العربية
One of the great challenges of QCD is to determine the partonic structure of the nucleon from first principles. In this work, we provide such a determination of the flavor non-singlet ($u-d$) unpolarized parton distribution function (PDF), utilizing the non-perturbative formulation of QCD on the lattice. We apply Radyushkins pseudo-distribution approach to lattice results obtained using simulations with the light quark mass fixed to its physical value; this is the first ever attempt for this approach directly at the physical point. The extracted coordinate-space matrix elements are used to find the relevant physical Ioffe time distributions from a matching procedure. The full Bjorken-$x$ dependence of PDFs is resolved using several reconstruction methods to tackle the ill-conditioned inverse problem encountered when using discrete lattice data. We consider both the valence distribution $q_v$ and the combination with antiquarks $q_v+2bar{q}$, related to, respectively, the real and imaginary part of extracted matrix elements. Good agreement is found with PDFs from global fits already within statistical uncertainties and it is further improved by quantifying several systematic effects. The results presented here are the first ever emph{ab initio} determinations of PDFs fully consistent with global fits in the whole $x$-range. Thus, they pave the way to investigating a wider class of partonic distributions, such as e.g. singlet PDFs and generalized parton distributions. Therefore, essential and yet missing first-principle insights can be achieved, complementing the rich experimental programs dedicated to the structure of the nucleon.
We present the first direct calculation of the transversity parton distribution function within the nucleon from lattice QCD. The calculation is performed using simulations with the light quark mass fixed to its physical value and at one value of the
We present the unpolarized and helicity parton distribution functions calculated within lattice QCD simulations using physical values of the light quark mass. Non-perturbative renormalization is employed and the lattice data are converted to the MSba
We present a detailed study of the helicity-dependent and helicity-independent collinear parton distribution functions (PDFs) of the nucleon, using the quasi-PDF approach. The lattice QCD computation is performed employing twisted mass fermions with
We report on recent results for the pion matrix element of the twist-2 operator corresponding to the average momentum of non-singlet quark densities. For the first time finite volume effects of this matrix element are investigated and come out to be
We present a high-statistics lattice QCD determination of the valence parton distribution function (PDF) of the pion, with a mass of 300 MeV, using two very fine lattice spacings of $a=0.06$ fm and 0.04 fm. We reconstruct the $x$-dependent PDF, as we