ترغب بنشر مسار تعليمي؟ اضغط هنا

OTHR multitarget tracking with a GMRF model of ionospheric parameters

118   0   0.0 ( 0 )
 نشر من قبل Zengfu Wang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The ionosphere is the propagation medium for radio waves transmitted by an over-the-horizon radar (OTHR). Ionospheric parameters, typically, virtual ionospheric heights (VIHs), are required to perform coordinate registration for OTHR multitarget tracking and localization. The inaccuracy of ionospheric parameters has a significant deleterious effect on the target localization of OTHR. Therefore, to improve the localization accuracy of OTHR, it is important to develop accurate models and estimation methods of ionospheric parameters and the corresponding target tracking algorithms. In this paper, we consider the variation of the ionosphere with location and the spatial correlation of the ionosphere in OTHR target tracking. We use a Gaussian Markov random field (GMRF) to model the VIHs, providing a more accurate representation of the VIHs for OTHR target tracking. Based on expectation-conditional maximization and GMRF modeling of the VIHs, we propose a novel joint optimization solution, called ECM-GMRF, to perform target state estimation, multipath data association and VIHs estimation simultaneously. In ECM-GMRF, the measurements from both ionosondes and OTHR are exploited to estimate the VIHs, leading to a better estimation of the VIHs which improves the accuracy of data association and target state estimation, and vice versa. The simulation indicates the effectiveness of the proposed algorithm.



قيم البحث

اقرأ أيضاً

We present an integrated approach for perception and control for an autonomous vehicle and demonstrate this approach in a high-fidelity urban driving simulator. Our approach first builds a model for the environment, then trains a policy exploiting th e learned model to identify the action to take at each time-step. To build a model for the environment, we leverage several deep learning algorithms. To that end, first we train a variational autoencoder to encode the input image into an abstract latent representation. We then utilize a recurrent neural network to predict the latent representation of the next frame and handle temporal information. Finally, we utilize an evolutionary-based reinforcement learning algorithm to train a controller based on these latent representations to identify the action to take. We evaluate our approach in CARLA, a high-fidelity urban driving simulator, and conduct an extensive generalization study. Our results demonstrate that our approach outperforms several previously reported approaches in terms of the percentage of successfully completed episodes for a lane keeping task.
In this work, we study estimation problems in nonlinear mechanical systems subject to non-stationary and unknown excitation, which are common and critical problems in design and health management of mechanical systems. A primary-auxiliary model sch eduling procedure based on time-domain transmissibilities is proposed and performed under switching linear dynamics: In addition to constructing a primary transmissibility family from the pseudo-inputs to the output during the offline stage, an auxiliary transmissibility family is constructed by further decomposing the pseudo-input vector into two parts. The auxiliary family enables to determine the unknown working condition at which the system is currently running at, and then an appropriate transmissibility from the primary transmissibility family for estimating the unknown output can be selected during the online estimation stage. As a result, the proposed approach offers a generalizable and explainable solution to the signal estimation problems in nonlinear mechanical systems in the context of switching linear dynamics with unknown inputs. A real-world application to the estimation of the vertical wheel force in a full vehicle system are, respectively, conducted to demonstrate the effectiveness of the proposed method. During the vehicle design phase, the vertical wheel force is the most important one among Wheel Center Loads (WCLs), and it is often measured directly with expensive, intrusive, and hard-to-install measurement devices during full vehicle testing campaigns. Meanwhile, the estimation problem of the vertical wheel force has not been solved well and is still of great interest. The experimental results show good performances of the proposed method in the sense of estimation accuracy for estimating the vertical wheel force.
In this paper, we analyze the two-node joint clock synchronization and ranging problem. We focus on the case of nodes that employ time-to-digital converters to determine the range between them precisely. This specific design choice leads to a sawtoot h model for the captured signal, which has not been studied before from an estimation theoretic standpoint. In the study of this model, we recover the basic conclusion of a well-known article by Freris, Graham, and Kumar in clock synchronization. More importantly, we discover a surprising identifiability result on the sawtooth signal model: noise improves the theoretical condition of the estimation of the phase and offset parameters. To complete our study, we provide performance references for joint clock synchronization and ranging using the sawtooth signal model by presenting an exhaustive simulation study on basic estimation strategies under different realistic conditions. With our contributions in this paper, we enable further research in the estimation of sawtooth signal models and pave the path towards their industrial use for clock synchronization and ranging.
This paper presents a novel set-based model predictive control for tracking, with the largest domain of attraction. The formulation - which consists of a single optimization problem - shows a dual behavior: one operating inside the maximal controllab le set to the feasible equilibrium set, and the other operating at the $N$-controllable set to the same equilibrium set. Based on some finite-time convergence results, global stability of the resulting closed-loop is proved, while recursive feasibility is ensured for any change of the set point. The properties and advantages of the controller have been tested on simulation models.
This paper provides an optimized cable path planning solution for a tree-topology network in an irregular 2D manifold in a 3D Euclidean space, with an application to the planning of submarine cable networks. Our solution method is based on total cost minimization, where the individual cable costs are assumed to be linear to the length of the corresponding submarine cables subject to latency constraints between pairs of nodes. These latency constraints limit the cable length and number of hops between any pair of nodes. Our method combines the Fast Marching Method (FMM) and a new Integer Linear Programming (ILP) formulation for Minimum Spanning Tree (MST) where there are constraints between pairs of nodes. We note that this problem of MST with constraints is NP-complete. Nevertheless, we demonstrate that ILP running time is adequate for the great majority of existing cable systems. For cable systems for which ILP is not able to find the optimal solution within an acceptable time, we propose an alternative heuristic algorithm based on Prims algorithm. In addition, we apply our FMM/ILP-based algorithm to a real-world cable path planning example and demonstrate that it can effectively find an MST with latency constraints between pairs of nodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا