ترغب بنشر مسار تعليمي؟ اضغط هنا

Capillary Levelling of Immiscible Bilayer Films

68   0   0.0 ( 0 )
 نشر من قبل Thomas Salez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Vincent Bertin




اسأل ChatGPT حول البحث

Flow in thin films is highly dependent on the boundary conditions. Here, we study the capillary levelling of thin bilayer films composed of two immiscible liquids. Specifically, a stepped polymer layer is placed atop another, flat polymer layer. The Laplace pressure gradient resulting from the curvature of the step induces flow in both layers, which dissipates the excess capillary energy stored in the stepped interface. The effect of different viscosity ratios between the bottom and top layers is investigated. We invoke a long-wave expansion of low-Reynolds-number hydrodynamics to model the energy dissipation due to the coupled viscous flows in the two layers. Good agreement is found between the experiments and the model. Analysis of the latter further reveals an interesting double crossover in time, from Poiseuille flow, to plug flow, and finally to Couette flow. The crossover time scales depend on the viscosity ratio between the two liquids, allowing for the dissipation mechanisms to be selected and finely tuned by varying this ratio.



قيم البحث

اقرأ أيضاً

We report on the capillary-driven levelling of a topographical perturbation at the surface of a free-standing liquid nanofilm. The width of a stepped surface profile is found to evolve as the square root of time. The hydrodynamic model is in excellen t agreement with the experimental data. In addition to exhibiting an analogy with diffusive processes, this novel system serves as a precise nanoprobe for the rheology of liquids at interfaces in a configuration that avoids substrate effects.
Small objects floating on a fluid have a tendency to aggregate due to capillary forces. This effect has been used, with the help of a magnetic induction field, to assemble submillimeter metallic spheres into a variety of structures, whose shape and s ize can be tuned. Under time-varying fields, these assemblies can propel themselves due to a breaking of time reversal symmetry in their adopted shapes. In this article, we study the influence of an in-plane rotation of the magnetic field on these structures. Various rotational modes have been observed with different underlying mechanisms. The magnetic properties of the particles cause them to rotate individually. Dipole-dipole interactions in the assembly can cause the whole structure to align with the field. Finally, non-reciprocal deformations can power the rotation of the assembly. Symmetry plays an important role in the dynamics, as well as the frequency and amplitude of the applied field. Understanding the interplay of these effects is essential, both to explain previous observations and to develop new functions for these assemblies.
Control on microscopic scales depends critically on our ability to manipulate interactions with different physical fields. The creation of micro-machines therefore requires us to understand how multiple fields, such as surface capillary or electro-ma gnetic, can be used to produce predictable behaviour. Recently, a spinning micro-raft system was developed that exhibited both static and dynamic self-assembly [Wang et al. (2017) Sci. Adv. 3, e1602522]. These rafts employed both capillary and magnetic interactions and, at a critical driving frequency, would suddenly change from stable orbital patterns to static assembled structures. In this paper, we explain the dynamics of two interacting micro-rafts through a combination of theoretical models and experiments. This is first achieved by identifying the governing physics of the orbital patterns, the assembled structures, and the collapse separately. We find that the orbital patterns are determined by the short range capillary interactions between the disks, while the explanations of the other two behaviours only require the capillary far field. Finally we combine the three models to explain the dynamics of a new micro-raft experiment.
90 - Zaicheng Zhang 2020
We report measurements of resonant thermal capillary oscillations of a hemispherical liquid gas interface obtained using a half bubble deposited on a solid substrate. The thermal motion of the hemispherical interface is investigated using an atomic f orce microscope cantilever that probes the amplitude of vibrations of this interface versus frequency. The spectrum of such nanoscale thermal oscillations of the bubble surface presents several resonance peaks and reveals that the contact line of the hemispherical bubble is pinned on the substrate. The analysis of these peaks allows to measure the surface viscosity of the bubble interface. Minute amounts of impurities are responsible for altering the rheology of the pure water surface.
201 - Marc Durand 2020
Many textbooks dealing with surface tension favor the thermodynamic approach (minimization of some thermodynamic potential such as free energy) over the mechanical approach (balance of forces) to describe capillary phenomena, stating that the latter is flawed and misleading. Yet, mechanical approach is more intuitive for students than free energy minimization, and does not require any knowledge of thermodynamics. In this paper we show that capillary phenomena can be unmistakably described using the mechanical approach, as long as the system on which the forces act is properly defined. After reminding the microscopic origin of a tangential tensile force at the interface, we derive the Young-Dupr{e} equation, emphasizing that this relation should be interpreted as an interface condition at the contact line, rather than a force balance equation. This correct interpretation avoids misidentification of capillary forces acting on a given system. Moreover, we show that a reliable method to correctly identify the acting forces is to define a control volume that does not embed any contact line on its surface. Finally, as an illustration of this method, we apply the mechanical approach in a variety of ways on a classic example: the derivation of the equilibrium height of capillary rise (Jurins law).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا