ﻻ يوجد ملخص باللغة العربية
The star transform is a generalized Radon transform mapping a function of two variables to its integrals along star-shaped trajectories, which consist of a finite number of rays emanating from a common vertex. Such operators appear in mathematical models of various imaging modalities based on scattering of elementary particles. The paper presents a comprehensive study of the inversion of the star transform. We describe the necessary and sufficient conditions for invertibility of the star transform, introduce a new inversion formula and discuss its stability properties. As an unexpected bonus of our approach, we prove a conjecture from algebraic geometry about the zero sets of elementary symmetric polynomials.
By exploring a spinor space whose elements carry a spin 1/2 representation of the Lorentz group and satisfy the the Fierz-Pauli-Kofink identities we show that certain symmetries operations form a Lie group. Moreover, we discuss the reflex of the Dira
Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown t
Recently R. Pandharipande, J. Solomon and R. Tessler initiated a study of the intersection theory on the moduli space of Riemann surfaces with boundary. They conjectured that the generating series of the intersection numbers is a specific solution of
We construct Darboux-Moutard type transforms for the two-dimensional conductivity equation. This result continues our recent studies of Darboux-Moutard type transforms for generalized analytic functions. In addition, at least, some of the Darboux-Mou
We show that $lambda$-symmetries can be algorithmically obtained by using the Jacobi last multiplier. Several examples are provided.