ﻻ يوجد ملخص باللغة العربية
A model of vector dark matter that communicates with the Standard Model only through gravitational interactions has been investigated. It has been shown in detail how does the canonical quantization of the vector field in varying FLRW geometry implies a tachyonic enhancement of some of its momentum modes. Approximate solutions of the mode equation have been found and verified against exact numerical ones. De Sitter geometry has been assumed during inflation while after inflation a non-standard cosmological era of reheating with a generic equation of state has been adopted which is followed by the radiation-dominated universe. It has been shown that the spectrum of dark vectors produced gravitationally is centered around a characteristic comoving momentum $k_star$ that is determined in terms of the mass of the vector $m_X$, the Hubble parameter during inflation $H_{rm I}$, the equation of state parameter $w$ and the efficiency of reheating $gamma$. Regions in the parameter space consistent with the observed dark matter relic abundance have been determined, justifying the gravitational production as a viable mechanism for vector dark matter. The results obtained in this paper are applicable within various possible models of inflation/reheating with non-standard cosmology parametrized effectively by the corresponding equation of state and efficiency of reheating.
We consider Dark Matter composed of an oscillating singlet scalar field. On top of the mass term, the scalar is equipped with a potential spontaneously breaking Z_2-symmetry. This potential dominates at early times and leads to the time-dependent exp
We present a scenario of vector dark matter production from symmetry breaking at the end of inflation. In this model, the accumulated energy density associated with the quantum fluctuations of the dark photon accounts for the present energy density o
Multi-component dark matter scenarios constitute natural extensions of standard single-component setups and offer attractive new dynamics that could be adopted to solve various puzzles of dark matter. In this work we present and illustrate properties
We work with a UV conformal U(1) extension of the Standard Model, motivated by the hierarchy problem and recent collider anomalies. This model admits fermionic vector portal WIMP dark matter charged under the U(1) gauge group. The asymptotically safe
Assuming that dark matter particles interact with quarks via a GeV-scale mediator, we study dark matter production in fixed target collisions. The ensuing signal in a neutrino near detector consists of neutral-current events with an energy distributi