ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast and Robust Unsupervised Contextual Biasing for Speech Recognition

332   0   0.0 ( 0 )
 نشر من قبل Young Mo Kang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic speech recognition (ASR) system is becoming a ubiquitous technology. Although its accuracy is closing the gap with that of human level under certain settings, one area that can further improve is to incorporate user-specific information or context to bias its prediction. A common framework is to dynamically construct a small language model from the provided contextual mini corpus and interpolate its score with the main language model during the decoding process. Here we propose an alternative approach that does not entail explicit contextual language model. Instead, we derive the bias score for every word in the system vocabulary from the training corpus. The method is unique in that 1) it does not require meta-data or class-label annotation for the context or the training corpus. 2) The bias score is proportional to the words log-probability, thus not only would it bias the provided context, but also robust against irrelevant context (e.g. user mis-specified or in case where it is hard to quantify a tight scope). 3) The bias score for the entire vocabulary is pre-determined during the training stage, thereby eliminating computationally expensive language model construction during inference. We show significant improvement in recognition accuracy when the relevant context is available. Additionally, we also demonstrate that the proposed method exhibits high tolerance to false-triggering errors in the presence of irrelevant context.



قيم البحث

اقرأ أيضاً

Language modeling (LM) for automatic speech recognition (ASR) does not usually incorporate utterance level contextual information. For some domains like voice assistants, however, additional context, such as the time at which an utterance was spoken, provides a rich input signal. We introduce an attention mechanism for training neural speech recognition language models on both text and non-linguistic contextual data. When applied to a large de-identified dataset of utterances collected by a popular voice assistant platform, our method reduces perplexity by 7.0% relative over a standard LM that does not incorporate contextual information. When evaluated on utterances extracted from the long tail of the dataset, our method improves perplexity by 9.0% relative over a standard LM and by over 2.8% relative when compared to a state-of-the-art model for contextual LM.
We propose a novel deep neural network architecture for speech recognition that explicitly employs knowledge of the background environmental noise within a deep neural network acoustic model. A deep neural network is used to predict the acoustic envi ronment in which the system in being used. The discriminative embedding generated at the bottleneck layer of this network is then concatenated with traditional acoustic features as input to a deep neural network acoustic model. Through a series of experiments on Resource Management, CHiME-3 task, and Aurora4, we show that the proposed approach significantly improves speech recognition accuracy in noisy and highly reverberant environments, outperforming multi-condition training, noise-aware training, i-vector framework, and multi-task learning on both in-domain noise and unseen noise.
This paper presents XLSR which learns cross-lingual speech representations by pretraining a single model from the raw waveform of speech in multiple languages. We build on wav2vec 2.0 which is trained by solving a contrastive task over masked latent speech representations and jointly learns a quantization of the latents shared across languages. The resulting model is fine-tuned on labeled data and experiments show that cross-lingual pretraining significantly outperforms monolingual pretraining. On the CommonVoice benchmark, XLSR shows a relative phoneme error rate reduction of 72% compared to the best known results. On BABEL, our approach improves word error rate by 16% relative compared to a comparable system. Our approach enables a single multilingual speech recognition model which is competitive to strong individual models. Analysis shows that the latent discrete speech representations are shared across languages with increased sharing for related languages. We hope to catalyze research in low-resource speech understanding by releasing XLSR-53, a large model pretrained in 53 languages.
End-to-end acoustic-to-word speech recognition models have recently gained popularity because they are easy to train, scale well to large amounts of training data, and do not require a lexicon. In addition, word models may also be easier to integrate with downstream tasks such as spoken language understanding, because inference (search) is much simplified compared to phoneme, character or any other sort of sub-word units. In this paper, we describe methods to construct contextual acoustic word embeddings directly from a supervised sequence-to-sequence acoustic-to-word speech recognition model using the learned attention distribution. On a suite of 16 standard sentence evaluation tasks, our embeddings show competitive performance against a word2vec model trained on the speech transcriptions. In addition, we evaluate these embeddings on a spoken language understanding task, and observe that our embeddings match the performance of text-based embeddings in a pipeline of first performing speech recognition and then constructing word embeddings from transcriptions.
In this paper we propose a Sequential Representation Quantization AutoEncoder (SeqRQ-AE) to learn from primarily unpaired audio data and produce sequences of representations very close to phoneme sequences of speech utterances. This is achieved by pr oper temporal segmentation to make the representations phoneme-synchronized, and proper phonetic clustering to have total number of distinct representations close to the number of phonemes. Mapping between the distinct representations and phonemes is learned from a small amount of annotated paired data. Preliminary experiments on LJSpeech demonstrated the learned representations for vowels have relative locations in latent space in good parallel to that shown in the IPA vowel chart defined by linguistics experts. With less than 20 minutes of annotated speech, our method outperformed existing methods on phoneme recognition and is able to synthesize intelligible speech that beats our baseline model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا