ﻻ يوجد ملخص باللغة العربية
We present an ab initio molecular dynamics (MD) investigation of the tautomeric equilibrium for aqueous solutions of glycine and acetone at realistic experimental conditions. Metadynamics is used to accelerate proton migration among tautomeric centers. Due to the formation of complex water-ion structures involved the proton dynamics in the aqueous environment, standard enhanced sampling approaches may face severe limitations in providing a general description of the phenomenon. Recently, we developed a set of Collective Variables (CVs) designed to study protons transfer reactions in complex condensed systems [Grifoni et al. PNAS, 2019, 116(10), 4054-4057]. In this work we applied this approach to study proton dissociation dynamics leading to tautomeric interconversion of biologically and chemically relevant prototypical systems, namely glycine and acetone in water. Although relatively simple from a chemical point of view, the results show that even for these small systems complex reaction pathways and non-trivial conversion dynamics are observed. The generality of our method allows obtaining these results without providing any prior information on the dissociation dynamics but only the atomic species that can exchange protons in the process. Our results agree with literature estimates and demonstrate the general applicability of this method in the study of tautomeric reactions.
The quantum many-body problem in condensed phases is often simplified using a quasiparticle description, such as effective mass theory for electron motion in a periodic solid. These approaches are often the basis for understanding many fundamental co
We demonstrate that the critical temperature for valence tautomeric interconversion in Cobalt dioxolene complexes can be significantly changed when a static electric field is applied to the molecule. This is achieved by effectively manipulating the r
We characterize several equilibrium vortex effects in a rotating Bose-Einstein condensate. Specifically we attempt precision measurements of vortex lattice spacing and the vortex core size over a range of condensate densities and rotation rates. Thes
The recent advances in creating nearly degenerate quantum dipolar gases in optical lattices are opening the doors for the exploration of equilibrium physics of quantum systems with anisotropic and long-range dipolar interactions. In this paper we stu
We present a comprehensive review of the physical behavior of yield stress materials in soft condensed matter, which encompass a broad range of materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disorder