ترغب بنشر مسار تعليمي؟ اضغط هنا

VisualEchoes: Spatial Image Representation Learning through Echolocation

65   0   0.0 ( 0 )
 نشر من قبل Ruohan Gao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Several animal species (e.g., bats, dolphins, and whales) and even visually impaired humans have the remarkable ability to perform echolocation: a biological sonar used to perceive spatial layout and locate objects in the world. We explore the spatial cues contained in echoes and how they can benefit vision tasks that require spatial reasoning. First we capture echo responses in photo-realistic 3D indoor scene environments. Then we propose a novel interaction-based representation learning framework that learns useful visual features via echolocation. We show that the learned image features are useful for multiple downstream vision tasks requiring spatial reasoning---monocular depth estimation, surface normal estimation, and visual navigation---with results comparable or even better than heavily supervised pre-training. Our work opens a new path for representation learning for embodied agents, where supervision comes from interacting with the physical world.

قيم البحث

اقرأ أيضاً

315 - Jaehun Kim 2018
Inspired by the success of deploying deep learning in the fields of Computer Vision and Natural Language Processing, this learning paradigm has also found its way into the field of Music Information Retrieval. In order to benefit from deep learning i n an effective, but also efficient manner, deep transfer learning has become a common approach. In this approach, it is possible to reuse the output of a pre-trained neural network as the basis for a new learning task. The underlying hypothesis is that if the initial and new learning tasks show commonalities and are applied to the same type of input data (e.g. music audio), the generated deep representation of the data is also informative for the new task. Since, however, most of the networks used to generate deep representations are trained using a single initial learning source, their representation is unlikely to be informative for all possible future tasks. In this paper, we present the results of our investigation of what are the most important factors to generate deep representations for the data and learning tasks in the music domain. We conducted this investigation via an extensive empirical study that involves multiple learning sources, as well as multiple deep learning architectures with varying levels of information sharing between sources, in order to learn music representations. We then validate these representations considering multiple target datasets for evaluation. The results of our experiments yield several insights on how to approach the design of methods for learning widely deployable deep data representations in the music domain.
A key aspect of machine learning models lies in their ability to learn efficient intermediate features. However, the input representation plays a crucial role in this process, and polyphonic musical scores remain a particularly complex type of inform ation. In this paper, we introduce a novel representation of symbolic music data, which transforms a polyphonic score into a continuous signal. We evaluate the ability to learn meaningful features from this representation from a musical point of view. Hence, we introduce an evaluation method relying on principled generation of synthetic data. Finally, to test our proposed representation we conduct an extensive benchmark against recent polyphonic symbolic representations. We show that our signal-like representation leads to better reconstruction and disentangled features. This improvement is reflected in the metric properties and in the generation ability of the space learned from our signal-like representation according to music theory properties.
In this paper we propose a Sequential Representation Quantization AutoEncoder (SeqRQ-AE) to learn from primarily unpaired audio data and produce sequences of representations very close to phoneme sequences of speech utterances. This is achieved by pr oper temporal segmentation to make the representations phoneme-synchronized, and proper phonetic clustering to have total number of distinct representations close to the number of phonemes. Mapping between the distinct representations and phonemes is learned from a small amount of annotated paired data. Preliminary experiments on LJSpeech demonstrated the learned representations for vowels have relative locations in latent space in good parallel to that shown in the IPA vowel chart defined by linguistics experts. With less than 20 minutes of annotated speech, our method outperformed existing methods on phoneme recognition and is able to synthesize intelligible speech that beats our baseline model.
Our objective is an audio-visual model for separating a single speaker from a mixture of sounds such as other speakers and background noise. Moreover, we wish to hear the speaker even when the visual cues are temporarily absent due to occlusion. To t his end we introduce a deep audio-visual speech enhancement network that is able to separate a speakers voice by conditioning on both the speakers lip movements and/or a representation of their voice. The voice representation can be obtained by either (i) enrollment, or (ii) by self-enrollment -- learning the representation on-the-fly given sufficient unobstructed visual input. The model is trained by blending audios, and by introducing artificial occlusions around the mouth region that prevent the visual modality from dominating. The method is speaker-independent, and we demonstrate it on real examples of speakers unheard (and unseen) during training. The method also improves over previous models in particular for cases of occlusion in the visual modality.
Language identification greatly impacts the success of downstream tasks such as automatic speech recognition. Recently, self-supervised speech representations learned by wav2vec 2.0 have been shown to be very effective for a range of speech tasks. We extend previous self-supervised work on language identification by experimenting with pre-trained models which were learned on real-world unconstrained speech in multiple languages and not just on English. We show that models pre-trained on many languages perform better and enable language identification systems that require very little labeled data to perform well. Results on a 25 languages setup show that with only 10 minutes of labeled data per language, a cross-lingually pre-trained model can achieve over 93% accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا