ﻻ يوجد ملخص باللغة العربية
Reliability is a fundamental requirement in any microprocessor to guarantee correct execution over its lifetime. The design rules related to reliability depend on the process technology being used and the expected operating conditions of the device. To meet reliability requirements, advanced process technologies (28 nm and below) impose highly challenging design rules. Such design-for-reliability rules have become a major burden on the flow of VLSI implementation because of the severe physical constraints they impose. This paper focuses on electromigration (EM), which is one of the major critical factors affecting semiconductor reliability. EM is the aging process of on-die wires and vias and is induced by excessive current flow that can damage wires and may also significantly impact the integrated-circuit clock frequency. EM exerts a comprehensive global effect on devices because it impacts wires that may reside inside the standard or custom logical cells, between logical cells, inside memory elements, and within wires that interconnect functional blocks. The design-implementation flow (synthesis and place-and-route) currently detects violations of EM-reliability rules and attempts to solve them. In contrast, this paper proposes a new approach to enhance these flows by using EM-aware architecture. Our results show that the proposed solution can relax EM design efforts in microprocessors and more than double microprocessor lifetime. This work demonstrates this proposed approach for modern microprocessors, although the principals and ideas can be adapted to other cases as well.
Reliability is a crucial requirement in any modern microprocessor to assure correct execution over its lifetime. As mission critical components are becoming common in commodity systems; e.g., control of autonomous cars, the demand for reliable proces
A modern GPU aims to simultaneously execute more warps for higher Thread-Level Parallelism (TLP) and performance. When generating many memory requests, however, warps contend for limited cache space and thrash cache, which in turn severely degrades p
There is an explosive growth in the size of the input and/or intermediate data used and generated by modern and emerging applications. Unfortunately, modern computing systems are not capable of handling large amounts of data efficiently. Major concep
Generalized Sparse Matrix-Matrix Multiplication (SpGEMM) is a ubiquitous task in various engineering and scientific applications. However, inner product based SpGENN introduces redundant input fetches for mismatched nonzero operands, while outer prod
Graph convolutional network (GCN) emerges as a promising direction to learn the inductive representation in graph data commonly used in widespread applications, such as E-commerce, social networks, and knowledge graphs. However, learning from graphs