ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of full disc Ca II K spectroheliograms III. Plage area composite series covering 1892-2019

87   0   0.0 ( 0 )
 نشر من قبل Theodosios Chatzistergos
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the plage area evolution over the last 12 solar cycles employing data from all Ca II K archives available publicly in digital form known to us, including several as yet unexplored Ca II K archives. We analyse more than 290,000 full-disc Ca II K observations from 43 datasets spanning the period 1892-2019. All images were consistently processed with an automatic procedure that performs the photometric calibration (if needed) and the limb-darkening compensation. The processing also accounts for artefacts plaguing many of the images, including some very specific artefacts such as bright arcs found in Kyoto and Yerkes data. We have produced a plage area time-series from each analysed dataset. We found that the differences between the plage areas derived from individual archives are mainly due to the differences in the central wavelength and the bandpass used to acquire the data at the various sites. We have empirically cross-calibrated and combined the results obtained from each dataset to produce a composite series of plage areas. Backbone series are used to bridge all the series together. We have also shown that the selection of the backbone series has little effect on the final plage area composite. We have quantified the uncertainty of determining the plage areas with our processing due to shifts in the central wavelength and found it to be less than 0.01 in fraction of the solar disc for the average conditions found on historical data. We also found the variable seeing conditions during the observations to slightly increase the plage areas during activity maxima. We provide the so far most complete time series of plage areas based on corrected and calibrated historical and modern Ca II K images. Consistent plage areas are now available on 88% of all days from 1892 onwards and on 98% from 1907 onwards.



قيم البحث

اقرأ أيضاً

Reconstructions of past irradiance variations require suitable data on solar activity. The longest direct proxy is the sunspot number, and it has been most widely employed for this purpose. These data, however, only provide information on the surface magnetic field emerging in sunspots, while a suitable proxy of the evolution of the bright magnetic features, specifically faculae/plage and network, is missing. This information can potentially be extracted from the historical full-disc observations in the Ca II K line. We have analysed over 100,000 historical images from 8 digitised photographic archives of the Arcetri, Kodaikanal, McMath-Hulbert, Meudon, Mitaka, Mt Wilson, Schauinsland, and Wendelstein observatories, as well as one archive of modern observations from the Rome/PSPT. The analysed data cover the period 1893--2018. We first performed careful photometric calibration and compensation for the centre-to-limb variation, and then segmented the images to identify plage regions. This has been consistently applied to both historical and modern observations. The plage series derived from different archives are generally in good agreement with each other. However, there are also clear deviations that most likely hint at intrinsic differences in the data and their digitisation. We showed that accurate image processing significantly reduces errors in the plage area estimates. Accurate photometric calibration also allows precise plage identification on images from different archives without the need to arbitrarily adjust the segmentation parameters. Finally, by comparing the plage area series from the various records, we found the conversion laws between them. This allowed us to produce a preliminary composite of the plage areas obtained from all the datasets studied here. This is a first step towards an accurate assessment of the long-term variation of plage regions.
Historical Ca II K spectroheliograms (SHG) are unique in representing long-term variations of the solar chromospheric magnetic field. They usually suffer from numerous problems and lack photometric calibration. Thus accurate processing of these data is required to get meaningful results from their analysis. In this paper we aim at developing an automatic processing and photometric calibration method that provides precise and consistent results when applied to historical SHG. The proposed method is based on the assumption that the centre-to-limb variation of the intensity in quiet Sun regions does not vary with time. We tested the accuracy of the proposed method on various sets of synthetic images that mimic problems encountered in historical observations. We also tested our approach on a large sample of images randomly extracted from seven different SHG archives. The tests carried out on the synthetic data show that the maximum relative errors of the method are generally <6.5%, while the average error is <1%, even if rather poor quality observations are considered. In the absence of strong artefacts the method returns images that differ from the ideal ones by <2% in any pixel. The method gives consistent values for both plage and network areas. We also show that our method returns consistent results for images from different SHG archives. Our tests show that the proposed method is more accurate than other methods presented in the literature. Our method can also be applied to process images from photographic archives of solar observations at other wavelengths than Ca II K.
We address the importance of historical full disc Ca II K spectroheliograms for solar activity and irradiance reconstruction studies. We review our work on processing such data to enable them to be used in irradiance reconstructions. We also present our preliminary estimates of the plage areas from five of the longest available historical Ca II K archives.
Analysis of over 36 years of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates five components of the variation of the seven measured chromospheric parameters: (a) the solar cycle (period ~ 11 years), (b) quasi-periodic variations (periods ~100 days), (c) a broad band stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at time scales in the range ~0.1 - 10 years. These results using only full-disk data suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as thosebeing produced by NASAs Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory web site http://nsosp.nso.edu/cak_mon/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters
We analyze observations from the Interface Region Imaging Spectrograph of the Mg II k line, the Mg II UV subordinate lines, and the O I 135.6 nm line to better understand the solar plage chromosphere. We also make comparisons with observations from t he Swedish 1 m Solar Telescope of the H{alpha} line, the Ca II 8542 line, and Solar Dynamics Observatory/Atmospheric Imaging Assembly observations of the coronal 19.3 nm line. To understand the observed Mg II profiles, we compare these observations to the results of numerical experiments. The single-peaked or flat-topped Mg II k profiles found in plage imply a transition region at a high column mass and a hot and dense chromosphere of about 6500 K. This scenario is supported by the observed large-scale correlation between moss brightness and filled-in profiles with very little or absent self-reversal. The large wing width found in plage also implies a hot and dense chromosphere with a steep chromospheric temperature rise. The absence of emission in the Mg II subordinate lines constrain the chromospheric temperature and the height of the temperature rise while the width of the O I 135.6 nm line sets a limit to the non-thermal velocities to around 7 km/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا