ﻻ يوجد ملخص باللغة العربية
In this paper we study approximation theorems for $L^2$-space on Damek-Ricci spaces. We prove direct Jackson theorem of approximations for the modulus of smoothness defined using spherical mean operator on Damek-Ricci spaces. We also prove Nikolskii-Stechkin inequality. To prove these inequalities we use functions of bounded spectrum as a tool of approximation. Finally, as an application, we prove equivalence of the $K$-functional and modulus of smoothness for Damek-Ricci spaces.
In this paper, we prove a $Tb$ theorem on product spaces $Bbb R^ntimes Bbb R^m$, where $b(x_1,x_2)=b_1(x_1)b_2(x_2)$, $b_1$ and $b_2$ are para-accretive functions on $Bbb R^n$ and $Bbb R^m$, respectively.
In this paper, we provide a non-homogeneous $T(1)$ theorem on product spaces $(X_1 times X_2, rho_1 times rho_2, mu_1 times mu_2)$ equipped with a quasimetric $rho_1 times rho_2$ and a Borel measure $mu_1 times mu_2$, which, need not be doubling but
In this article, the authors introduce Besov-type spaces with variable smoothness and integrability. The authors then establish their characterizations, respectively, in terms of $varphi$-transforms in the sense of Frazier and Jawerth, smooth atoms o
In this article, we extend a result of L. Loomis and W. Rudin, regarding boundary behavior of positive harmonic functions on the upper half space $R_+^{n+1}$. We show that similar results remain valid for more general approximate identities. We apply
We address the optimal constants in the strong and the weak Stechkin inequalities, both in their discrete and continuous variants. These inequalities appear in the characterization of approximation spaces which arise from sparse approximation or have