ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision measurement of the ${cal B}(Upsilon(3S)totau^+tau^-)/{cal B}(Upsilon(3S)tomu^+mu^-)$ ratio

91   0   0.0 ( 0 )
 نشر من قبل Alexei Sibidanov
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a precision measurement of the ratio ${cal R}_{taumu}^{Upsilon(3S)} = {cal B}(Upsilon(3S)totau^+tau^-)/{cal B}(Upsilon(3S)tomu^+mu^-)$ using data collected with the BaBar detector at the SLAC PEP-II $e^+e^-$ collider. The measurement is based on a 28 fb$^{-1}$ data sample collected at a center-of-mass energy of 10.355 GeV corresponding to a sample of 122 million $Upsilon(3S)$ mesons. The ratio is measured to be ${cal R}_{taumu}^{Upsilon(3S)} = 0.966 pm 0.008_mathrm{stat} pm 0.014_mathrm{syst}$ and is in agreement with the Standard Model prediction of 0.9948 within 2 standard deviations. The uncertainty in ${cal R}_{taumu}^{Upsilon(3S)}$ is almost an order of magnitude smaller than the only previous measurement.



قيم البحث

اقرأ أيضاً

64 - M. Artuso , et al 2004
We have studied the inclusive photon spectra in Upsilon(2S) and Upsilon(3S) decays using a large statistics data sample obtained with the CLEO III detector. We present the most precise measurements of electric dipole (E1) photon transition rates and photon energies for Upsilon(2S)->gamma chi_bJ(1P) and Upsilon(3S)->gamma chi_bJ(2P) J=0,1,2. We measure the rate for a rare E1 transition Upsilon(3S)->gamma chi_b0(1P) for the first time. We also set upper limits on the rates for the hindered magnetic dipole (M1) transitions to the eta_b(1S) and eta_b(2S) states.
The inclusive $Upsilon(1S,2S,3S)$ photoproduction at the future Circular-Electron-Positron-Collider (CEPC) is studied based on the non-relativistic QCD (NRQCD). Including the contributions from both direct and resolved photons, we present different d istributions for $Upsilon(1S,2S,3S)$ production and the results show there will be considerable events, which means that a well measurements on the $Upsilon$ photoprodution could be performed to further study on the heavy quarkonium physics at electron-positron collider in addition to hadron colliders. This supplement study is very important to clarify the current situation of the heavy quarkonium production mechanism.
Using the CLEO~II detector we measure ${cal B}(D_s^+to eta e^+ u)/{cal B}(D_s^+to phi e^+ u) =1.24pm0.12pm0.15$, ${cal B}(D_s^+to eta e^+ u)/{cal B}(D_s^+to phi e^+ u) =0.43pm0.11pm0.07$ and ${cal B}(D_s^+to eta e^+ u)/{cal B}(D_s^+to eta e^+ u) =0.3 5pm0.09pm0.07$. We find the vector to pseudoscalar ratio, ${cal B}(D_s^+to phi e^+ u)/{cal B}(D_s^+to (eta+eta) e^+ u) =0.60pm0.06pm0.06$, which is similar to the ratio found in non strange $D$ decays.
Based on $(106.41 pm 0.86)times 10^{6}$ $psi(3686)$ events collected with the BESIII detector at the BEPCII collider, the branching fractions of $psi(3686) to pi^+pi^- J/psi$, $J/psi to e^+e^- $, and $J/psi to mu^+mu^-$ are measured. We obtain ${cal B}[psi(3686) to pi^+pi^-J/psi]=(34.98pm 0.02pm 0.45)%$, ${cal B}[J/psi to e^+e^-] = (5.983 pm 0.007 pm 0.037)%$ and ${cal B}[J/psi to mu^+mu^-] = (5.973 pm 0.007 pm 0.038)%$. The measurement of ${cal B}[psi(3686) to pi^{+}pi^{-}J/psi]$ confirms the CLEO-c measurement, and is apparently larger than the others. The measured $J/psi$ leptonic decay branching fractions agree with previous experiments within one standard deviation. These results lead to ${cal B}[J/psi to l^+l^-] = (5.978 pm 0.005 pm 0.040)%$ by averaging over the $e^{+}e^{-}$ and $mu^{+}mu^{-}$ channels and a ratio of ${cal B}[J/psi to e^+e^-] / {cal B}[J/psi to mu^+mu^-] = 1.0017 pm 0.0017 pm 0.0033$, which tests $e$-$mu$ universality at the four tenths of a percent level. All the measurements presented in this paper are the most precise in the world to date.
The dipion transitions $Upsilon(2S,3S,4S) to Upsilon(1S,2S)pipi$ are systematically studied by considering the mechanisms of the hadronization of soft gluons, exchanging the bottomoniumlike $Z_b$ states, and the bottom-meson loops. The strong pion-pi on final-state interaction, especially including the channel coupling to $Kbar{K}$ in the $S$-wave, is taken into account in a model-independent way using the dispersion theory. Through fitting to the available experimental data, we extract values of the transition chromopolarizabilities $|alpha_{Upsilon(mS)Upsilon(nS)}|$, which measure the chromoelectric couplings of the bottomonia with soft gluons. It is found that the $Z_b$ exchange has a slight impact on the extracted chromopolarizablity values, and the obtained $|alpha_{Upsilon(2S)Upsilon(1S)}|$ considering the $Z_b$ exchange is $(0.29pm 0.20)~text{GeV}^{-3}$. Our results could be useful in studying the interactions of bottomonium with light hadrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا