ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Origin of Metallicity and Stability of the Metastable Phase in Chemically Exfoliated MoS$_2$

64   0   0.0 ( 0 )
 نشر من قبل D.D. Sarma
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Debasmita Pariari




اسأل ChatGPT حول البحث

Chemical exfoliation of MoS$_2$ via Li-intercalation route has led to many desirable properties and spectacular applications due to the presence of a metastable state in addition to the stable H phase. However, the nature of the specific metastable phase formed, and its basic charge conduction properties have remained controversial. Using spatially resolved Raman spectroscopy (~1 micrometer resolution) and photoelectron spectroscopy (~120 nm resolution), we probe such chemically exfoliated MoS$_2$ samples in comparison to a mechanically exfoliated H phase sample and confirm that the dominant metastable state formed by this approach is a distorted T state with a small semiconducting gap. Investigating two such samples with different extents of Li residues present, we establish that Li+ ions, not only help to exfoliate MoS$_2$ into few layer samples, but also contribute to enhancing the relative stability of the metastable state as well as dope the system with electrons, giving rise to a lightly doped small bandgap system with the T structure, responsible for its spectacular properties.



قيم البحث

اقرأ أيضاً

279 - Matteo Calandra 2013
Chemically and mechanically exfoliated MoS$_2$ single-layer samples have substantially different properties. While mechanically exfoliated single-layers are mono-phase (1H polytype with Mo in trigonal prismatic coordination), the chemically exfoliate d samples show coexistence of three different phases, 1H, 1T (Mo in octahedral coordination) and 1T$^{}$ (a distorted $2times 1$ 1T-superstructure). By using first-principles calculations, we investigate the energetics and the dynamical stability of the three phases. We show that the 1H phase is the most stable one, while the metallic 1T phase, strongly unstable, undergoes a phase transition towards a metastable and insulating 1T$^{}$ structure composed of separated zig-zag chains. We calculate electronic structure, phonon dispersion, Raman frequencies and intensities for the 1T$^{}$ structure. We provide a microscopical description of the J$_1$, J$_2$ and J$_3$ Raman features first detected more then $20$ years ago, but unexplained up to now. Finally, we show that H adsorbates, that are naturally present at the end of the chemical exfoliation process, stabilize the 1T$^{prime}$ over the 1H one.
Ideal monolayers of common semiconducting transition metal dichalcogenides (TMDCs) such as MoS$_2$, WS$_2$, MoSe$_2$, and WSe$_2$ possess many similar electronic properties. As it is the case for all semiconductors, however, the physical response of these systems is strongly determined by defects in a way specific to each individual compound. Here we investigate the ability of exfoliated monolayers of these TMDCs to support high-quality, well-balanced ambipolar conduction, which has been demonstrated for WS$_2$, MoSe$_2$, and WSe$_2$, but not for MoS$_2$. Using ionic-liquid gated transistors we show that, contrary to WS$_2$, MoSe$_2$, and WSe$_2$, hole transport in exfoliated MoS$_2$ monolayers is systematically anomalous, exhibiting a maximum in conductivity at negative gate voltage (V$_G$) followed by a suppression of up to 100 times upon further increasing V$_G$. To understand the origin of this difference we have performed a series of experiments including the comparison of hole transport in MoS$_2$ monolayers and thicker multilayers, in exfoliated and CVD-grown monolayers, as well as gate-dependent optical measurements (Raman and photoluminescence) and scanning tunneling imaging and spectroscopy. In agreement with existing {it ab-initio} calculations, the results of all these experiments are consistently explained in terms of defects associated to chalcogen vacancies that only in MoS$_2$ monolayers -- but not in thicker MoS$_2$ multilayers nor in monolayers of the other common semiconducting TMDCs -- create in-gap states near the top of the valence band that act as strong hole traps. Our results demonstrate the importance of studying systematically how defects determine the properties of 2D semiconducting materials and of developing methods to control them.
119 - C. Shang , Y. Q. Fang , Q. Zhang 2018
Transition-metal dichalcogenides open novel opportunities for the exploration of exciting new physics and devices. As a representative system, 2H-MoS$_2$ has been extensively investigated owing to its unique band structure with a large band gap, dege nerate valleys and non-zero Berry curvature. However, experimental studies of metastable 1T polytypes have been a challenge for a long time, and electronic properties are obscure due to the inaccessibility of single phase without the coexistence of 1T, 1T and 1T lattice structures, which hinder the broad applications of MoS$_2$ in future nanodevices and optoelectronic devices. Using ${K_x(H_2O)_yMoS_2}$ as the precursor, we have successfully obtained high-quality layered crystals of the metastable 1T-MoS$_2$ with $sqrt{3}atimessqrt{3}a$ superstructure and metastable 1T-MoS$_2$ with a$times$2a superstructure, as evidenced by structural characterizations through scanning tunneling microscopy, Raman spectroscopy and X-ray diffraction. It is found that the metastable 1T-MoS$_2$ is a superconductor with onset transition temperature (${T_c}$) of 4.2 K, while the metastable 1 T-MoS$_2$ shows either superconductivity with Tc of 5.3 K or insulating behavior, which strongly depends on the synthesis procedure. Both of the metastable polytypes of MoS$_2$ crystals can be transformed to the stable 2H phase with mild annealing at about 70 $^{circ}$C in He atmosphere. These findings provide pivotal information on the atomic configurations and physical properties of 1T polytypes of MoS$_2$.
Strong light-matter interactions in layered transition metal dichalcogenides (TMDs) open up vivid possibilities for novel exciton-based devices. The optical properties of TMDs are dominated mostly by the tightly bound excitons and more complex quasip articles, the biexcitons. Instead of physically exfoliated monolayers, the solvent-mediated chemical exfoliation of these 2D crystals is a cost-effective, large-scale production method suitable for real device applications. We explore the ultrafast excitonic processes in WS$_{2}$ dispersion using broadband femtosecond pump-probe spectroscopy at room temperature. We detect the biexcitons experimentally and calculate their binding energies, in excellent agreement with earlier theoretical predictions. Using many-body physics, we show that the excitons act like Weiner-Mott excitons and explain the origin of excitons via first-principles calculations. Our detailed time-resolved investigation provides ultrafast radiative and non-radiative lifetimes of excitons and biexcitons in WS$_{2}$. Indeed, our results demonstrate the potential for excitonic quasiparticle-controlled TMDs-based devices operating at room temperature.
To date, germanene has only been synthesized on metallic substrates. A metallic substrate is usually detrimental for the two-dimensional Dirac nature of germanene because the important electronic states near the Fermi level of germanene can hybridize with the electronic states of the metallic substrate. Here we report the successful synthesis of germanene on molybdenum disulfide (MoS$_2$), a band gap material. Pre-existing defects in the MoS$_2$ surface act as preferential nucleation sites for the germanene islands. The lattice constant of the germanene layer (3.8 $pm$ 0.2 AA) is about 20% larger than the lattice constant of the MoS$_2$ substrate (3.16 AA). Scanning tunneling spectroscopy measurements and density functional theory calculations reveal that there are, besides the linearly dispersing bands at the $K$ points, two parabolic bands that cross the Fermi level at the $Gamma$ point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا