ترغب بنشر مسار تعليمي؟ اضغط هنا

Lorentz microscopy and small-angle electron diffraction study of magnetic textures in La$_{1-x}$Sr$_x$MnO$_3$ (0.15 $< x <$ 0.30): the role of magnetic anisotropy

115   0   0.0 ( 0 )
 نشر من قبل Hiroshi Nakajima Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic textures in the ferromagnetic phases of La$_{1-x}$Sr$_x$MnO$_3$ for 0.15 $< x <$ 0.30 have been investigated by Lorentz microscopy combined with small-angle electron diffraction experiments. Various types of magnetic textures characterized by stripe, plate-shaped, and cylindrical (magnetic bubble) domains were found. Two distinct types of magnetic stripe domains appeared in the orthorhombic structure with an inversion symmetry of La$_{0.825}$Sr$_{0.175}$MnO$_3$, depending significantly on magnetocrystalline anisotropy. Based on in-situ observations as functions of temperature and the strength of the external magnetic field, a magnetic field-temperature phase diagram was constructed, showing the stabilization of magnetic bubbles in the ferromagnetic phase of La$_{0.825}$Sr$_{0.175}$MnO$_3$.



قيم البحث

اقرأ أيضاً

Magnetic anisotropies of ferromagnetic thin films are induced by epitaxial strain from the substrate via strain-induced anisotropy in the orbital magnetic moment and that in the spatial distribution of spin-polarized electrons. However, the preferent ial orbital occupation in ferromagnetic metallic La$_{1-x}$Sr$_x$MnO$_3$ (LSMO) thin films studied by x-ray linear dichroism (XLD) has always been found out-of-plane for both tensile and compressive epitaxial strain and hence irrespective of the magnetic anisotropy. In order to resolve this mystery, we directly probed the preferential orbital occupation of spin-polarized electrons in LSMO thin films under strain by angle-dependent x-ray magnetic circular dichroism (XMCD). Anisotropy of the spin-density distribution was found to be in-plane for the tensile strain and out-of-plane for the compressive strain, consistent with the observed magnetic anisotropy. The ubiquitous out-of-plane preferential orbital occupation seen by XLD is attributed to the occupation of both spin-up and spin-down out-of-plane orbitals in the surface magnetic dead layer.
We report on Raman scattering measurements of single crystalline La$_{1-x}$Sr$_x$MnO$_3$ ($x$=0, 0.06, 0.09 and 0.125), focusing on the high frequency regime. We observe multi-phonon scattering processes up to fourth-order which show distinct feature s: (i) anomalies in peak energy and its relative intensity and (ii) a pronounced temperature-, polarization-, and doping-dependence. These features suggest a mixed orbiton-phonon nature of the observed multi-phonon Raman spectra.
We report formation of magnetic textures in the ferromagnetic (FM) phase of La$_{1-x}$Sr$_x$MnO$_3$ for $x =$ 0.125; these textures are magnetic bubbles, magnetic stripe domains, and forced FM states. In situ Lorentz microscopy (LM) observations show that magnetic bubbles exist in the FM insulating phase accompanying the formation of the charge$/$orbital ordering (CO$/$OO). Furthermore, stable magnetic bubbles still exist in an intermediate temperature region between the CO$/$OO ($T_{CO} =$ 155 K) and FM ($T_c =$ 190 K) transition temperatures. These magnetic bubbles are believed to originate from the magnetocrystalline anisotropy and the dipole-dipole interaction in the FM phase. Based on in situ LM observations as a function of both temperature and the strength of the external magnetic field applied, a magnetic field-temperature phase diagram is constructed, exhibiting the stabilizing regions of the magnetic bubbles in the FM phase of La$_{0.875}$Sr$_{0.125}$MnO$_{3}$.
With x-ray absorption spectroscopy we investigated the orbital reconstruction and the induced ferromagnetic moment of the interfacial Cu atoms in YBa$_2$Cu$_3$O$_{7}$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) and La$_{2-x}$Sr$_{x}$CuO$_4$/La$_{2/3}$Ca$ _{1/3}$MnO$_3$ (LSCO/LCMO) multilayers. We demonstrate that these electronic and magnetic proximity effects are coupled and are common to these cuprate/manganite multilayers. Moreover, we show that they are closely linked to a specific interface termination with a direct Cu-O-Mn bond. We furthermore show that the intrinsic hole doping of the cuprate layers and the local strain due to the lattice mismatch between the cuprate and manganite layers are not of primary importance. These findings underline the central role of the covalent bonding at the cuprate/manganite interface in defining the spin-electronic properties.
We use resonant elastic and inelastic X-ray scattering at the Ir-$L_3$ edge to study the doping-dependent magnetic order, magnetic excitations and spin-orbit excitons in the electron-doped bilayer iridate (Sr$_{1-x}$La$_{x}$)$_3$Ir$_2$O$_7$ ($0 leq x leq 0.065$). With increasing doping $x$, the three-dimensional long range antiferromagnetic order is gradually suppressed and evolves into a three-dimensional short range order from $x = 0$ to $0.05$, followed by a transition to two-dimensional short range order between $x = 0.05$ and $0.065$. Following the evolution of the antiferromagnetic order, the magnetic excitations undergo damping, anisotropic softening and gap collapse, accompanied by weakly doping-dependent spin-orbit excitons. Therefore, we conclude that electron doping suppresses the magnetic anisotropy and interlayer couplings and drives (Sr$_{1-x}$La$_x$)$_3$Ir$_2$O$_7$ into a correlated metallic state hosting two-dimensional short range antiferromagnetic order and strong antiferromagnetic fluctuations of $J_{text{eff}} = frac{1}{2}$ moments, with the magnon gap strongly suppressed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا