ﻻ يوجد ملخص باللغة العربية
All local bond-state densities are calculated for q-state Potts and clock models in three spatial dimensions, d=3. The calculations are done by an exact renormalization group on a hierarchical lattice, including the density recursion relations, and simultaneously are the Migdal-Kadanoff approximation for the cubic lattice. Reentrant behavior is found in the interface densities under symmetry breaking, in the sense that upon lowering temperature the value of the density first increases, then decreases to its zero value at zero temperature. For this behavior, a physical mechanism is proposed. A contrast between the phase transition of the two models is found, and explained by alignment and entropy, as the number of states q goes to infinity. For the clock models, the renormalization-group flows of up to twenty energies are used.
We demonstrate that the occurrence of symmetry breaking phase transitions together with the emergence of a local order parameter in classical statistical physics is a consequence of the geometrical structure of probability space. To this end we inves
It is known that a trained Restricted Boltzmann Machine (RBM) on the binary Monte Carlo Ising spin configurations, generates a series of iterative reconstructed spin configurations which spontaneously flow and stabilize to the critical point of physi
Fortuin-Kastelyn clusters in the critical $Q$-state Potts model are conformally invariant fractals. We obtain simulation results for the fractal dimension of the complete and external (accessible) hulls for Q=1, 2, 3, and 4, on clusters that wrap aro
We accurately simulate the phase diagram and critical behavior of the $q$-state clock model on the square lattice by using the state-of-the-art loop optimization for tensor network renormalzation(loop-TNR) algorithm. The two phase transition points f
We study $q$-state clock models of regular and Villain types with $q=5,6$ using cluster-spin updates and observed double transitions in each model. We calculate the correlation ratio and size-dependent correlation length as quantities for characteriz