ﻻ يوجد ملخص باللغة العربية
The effect of a network of fixed rigid fibers on fluid flow is investigated by means of three-dimensional direct numerical simulations using an immersed boundary method for the fluid-structure coupling. Different flows are considered (i.e., cellular, parallel and homogeneous isotropic turbulent flow) in order to identify the modification of the classic energy budget occurring within canopies or fibrous media, as well as particle-laden flows. First, we investigate the stabilizing effect of the network on the Arnold-Beltrami-Childress (ABC) cellular flow, showing that, the steady configuration obtained for a sufficiently large fiber concentration mimics the single-phase stable solution at a lower Reynolds number. Focusing on the large-scale dynamics, the effect of the drag exerted by the network on the flow can be effectively modelled by means of a Darcys friction term. For the latter, we propose a phenomenological expression that is corroborated when extending our analysis to the Kolmogorov parallel flow and homogeneous isotropic turbulence. Furthermore, we examine the overall energy distribution across the various scales of motion, highlighting the presence of small-scale activity with a peak in the energy spectra occurring at the wavenumber corresponding to the network spacing.
Practically all flows are turbulent in nature and contain some kind of irregularly-shaped particles, e.g. dirt, pollen, or life forms such as bacteria or insects. The effect of the particles on such flows and vice-versa are highly non-trivial and are
We consider sedimentation of a rigid helical filament in a viscous fluid under gravity. In the Stokes limit, the drag forces and torques on the filament are approximated within the resistive-force theory. We develop an analytic approximation to the e
There exists continuous demand of improved turbulence models for the closure of Reynolds Averaged Navier-Stokes (RANS) simulations. Machine Learning (ML) offers effective tools for establishing advanced empirical Reynolds stress closures on the basis
A public database system archiving a direct numerical simulation (DNS) data set of isotropic, forced turbulence is described in this paper. The data set consists of the DNS output on $1024^3$ spatial points and 1024 time-samples spanning about one la
We conduct a theoretical study of a two-phase-fluid-structure interaction problem in which air is driven at constant volume flux into a liquid-filled Hele-Shaw channel whose upper boundary is an elastic sheet. A depth-averaged model in the frame of r