ﻻ يوجد ملخص باللغة العربية
Every day, more people are becoming infected and dying from exposure to COVID-19. Some countries in Europe like Spain, France, the UK and Italy have suffered particularly badly from the virus. Others such as Germany appear to have coped extremely well. Both health professionals and the general public are keen to receive up-to-date information on the effects of the virus, as well as treatments that have proven to be effective. In cases where language is a barrier to access of pertinent information, machine translation (MT) may help people assimilate information published in different languages. Our MT systems trained on COVID-19 data are freely available for anyone to use to help translate information published in German, French, Italian, Spanish into English, as well as the reverse direction.
Multilingual neural machine translation (NMT) enables training a single model that supports translation from multiple source languages into multiple target languages. In this paper, we push the limits of multilingual NMT in terms of number of languag
We investigate the following question for machine translation (MT): can we develop a single universal MT model to serve as the common seed and obtain derivative and improved models on arbitrary language pairs? We propose mRASP, an approach to pre-tra
The Coronavirus (COVID-19) pandemic has led to a rapidly growing infodemic of health information online. This has motivated the need for accurate semantic search and retrieval of reliable COVID-19 information across millions of documents, in multiple
Multilingual neural machine translation (NMT), which translates multiple languages using a single model, is of great practical importance due to its advantages in simplifying the training process, reducing online maintenance costs, and enhancing low-
Multilingual neural machine translation (NMT) has recently been investigated from different aspects (e.g., pivot translation, zero-shot translation, fine-tuning, or training from scratch) and in different settings (e.g., rich resource and low resourc