ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct geometrical measurement of the Hubble constant from galaxy parallax: predictions for the Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope

238   0   0.0 ( 0 )
 نشر من قبل Rupert Croft
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rupert A.C. Croft




اسأل ChatGPT حول البحث

We investigate the possibility that a statistical detection of the galaxy parallax shift due to the Earths motion with respect to the CMB frame (cosmic secular parallax) could be made by the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) or by the Nancy Grace Roman Space Telescope (NGRST), and used to measure the Hubble constant. We make mock galaxy surveys which extend to redshift z=0.06 from a large N-body simulation, and include astrometric errors from the LSST and NGRST science requirements, redshift errors and peculiar velocities. We include spectroscopic redshifts for the brightest galaxies (r < 18) in the fiducial case. We use these catalogues to make measurements of parallax versus redshift,for various assumed survey parameters and analysis techniques. We find that in order to make a competitive measurement it will be necessary to model and correct for the peculiar velocity component of galaxy proper motions. It will also be necessary to push astrometry of extended sources into a new regime, and combine information from the different elements of resolved galaxies. In an appendix we describe some simple tests of galaxy image registration which yield relatively promising results. For our fiducial survey parameters, we predict an rms error on the direct geometrical measurement of H0 of 2.8% for LSST and 0.8% for NGRST.



قيم البحث

اقرأ أيضاً

147 - B. M. Rose , G. Aldering , M. Dai 2021
We review the needs of the supernova community for improvements in survey coordination and data sharing that would significantly boost the constraints on dark energy using samples of Type Ia supernovae from the Vera C. Rubin Observatories, the textit {Nancy Grace Roman Space Telescope}, and the textit{Euclid} Mission. We discuss improvements to both statistical and systematic precision that the combination of observations from these experiments will enable. For example, coordination will result in improved photometric calibration, redshift measurements, as well as supernova distances. We also discuss what teams and plans should be put in place now to start preparing for these combined data sets. Specifically, we request coordinated efforts in field selection and survey operations, photometric calibration, spectroscopic follow-up, pixel-level processing, and computing. These efforts will benefit not only experiments with Type Ia supernovae, but all time-domain studies, and cosmology with multi-messenger astrophysics.
The Nancy Grace Roman Space Telescope (Roman) will perform a Galactic Exoplanet Survey (RGES) to discover bound exoplanets with semi-major axes greater than 1 au using gravitational microlensing. Roman will even be sensitive to planetary mass objects that are not gravitationally bound to any host star. Such free-floating planetary mass objects (FFPs) will be detected as isolated microlensing events with timescales shorter than a few days. A measurement of the abundance and mass function of FFPs is a powerful diagnostic of the formation and evolution of planetary systems, as well as the physics of the formation of isolated objects via direct collapse. We show that Roman will be sensitive to FFP lenses that have masses from that of Mars ($0.1 M_oplus$) to gas giants ($Mgtrsim100M_oplus$) as isolated lensing events with timescales from a few hours to several tens of days, respectively. We investigate the impact of the detection criteria on the survey, especially in the presence of finite-source effects for low-mass lenses. The number of detections will depend on the abundance of such FFPs as a function of mass, which is at present poorly constrained. Assuming that FFPs follow the fiducial mass function of cold, bound planets adapted from Cassan et al. (2012), we estimate that Roman will detect $sim250$ FFPs with masses down to that of Mars (including $sim 60$ with masses $le M_oplus$). We also predict that Roman will improve the upper limits on FFP populations by at least an order of magnitude compared to currently-existing constraints.
The Coronagraph Instrument (CGI) on the Nancy Grace Roman Space Telescope will demonstrate the high-contrast technology necessary for visible-light exoplanet imaging and spectroscopy from space via direct imaging of Jupiter-size planets and debris di sks. This in-space experience is a critical step toward future, larger missions targeted at direct imaging of Earth-like planets in the habitable zones of nearby stars. This paper presents an overview of the current instrument design and requirements, highlighting the critical hardware, algorithms, and operations being demonstrated. We also describe several exoplanet and circumstellar disk science cases enabled by these capabilities. A competitively selected Community Participation Program team will be an integral part of the technology demonstration and could perform additional CGI observations beyond the initial tech demo if the instrument performance warrants it.
The textit{Nancy Grace Roman Space Telescope} (textit{ Roman}) will provide an enormous number of microlensing light curves with much better photometric precisions than ongoing ground-based observations. Such light curves will enable us to observe hi gh-order microlensing effects which have been previously difficult to detect. In this paper, we investigate textit{Roman}s potential to detect and characterize short-period planets and brown dwarfs (BDs) in source systems using the orbital motion of source stars, the so-called xallarap effect. We analytically estimate the measurement uncertainties of xallarap parameters using the Fisher matrix analysis. We show that the textit{Roman} Galactic Exoplanet Survey (RGES) can detect warm Jupiters with masses down to 0.5 $M_{rm Jup}$ and orbital period of 30 days via the xallarap effect. Assuming a planetary frequency function from citet{Cumming+2008}, we find textit{Roman} will detect $sim10$ hot and warm Jupiters and $sim30$ close-in BDs around microlensed source stars during the microlensing survey. These detections are likely to be accompanied by the measurements of the companions masses and orbital elements, which will aid in the study of the physical properties for close-in planet and BD populations in the Galactic bulge.
The commissioning team for the Vera C. Rubin observatory is planning a set of engineering and science verification observations with the Legacy Survey of Space and Time (LSST) commissioning camera and then the Rubin Observatory LSST Camera. The time frame for these observations is not yet fixed, and the commissioning team will have flexibility in selecting fields to observe. In this document, the Dark Energy Science Collaboration (DESC) Commissioning Working Group presents a prioritized list of target fields appropriate for testing various aspects of DESC-relevant science performance, grouped by season for visibility from Rubin Observatory at Cerro Pachon. Our recommended fields include Deep-Drilling fields (DDFs) to full LSST depth for photo-$z$ and shape calibration purposes, HST imaging fields to full depth for deblending studies, and an $sim$200 square degree area to 1-year depth in several filters for higher-level validation of wide-area science cases for DESC. We also anticipate that commissioning observations will be needed for template building for transient science over a broad RA range. We include detailed descriptions of our recommended fields along with associated references. We are optimistic that this document will continue to be useful during LSST operations, as it provides a comprehensive list of overlapping data-sets and the references describing them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا